PTFE Plastic Tube Extrusion Machine Top

Website: http://www.sukoptfe.com

Why Choose PTFE Sheet?

2017-08-23 16:49:20 | PTFE Sheet
Polytetrafluoroethylene (PTFE) sounds like a lot of scientific but it is better known by its brand name: Teflon. Everyone likely have a collection of non-stick pots and pans that are coated with PTFE. The combination of chemical and physical properties of PTFE is a consequence of its true fluorocarbon structure. This unusual structure leads to a material which has an almost universal chemical inertness; complete insolubility in all known solvents below 300°C; excellent thermal stability; and unsurpassed electrical properties, including low dielectric loss, low dielectric constant and high dielectric strength. Furthermore, PTFE does not embrittle at very high or at very low temperatures.
PTFE Sheet
1. High temperature resistance: It could work stable between 200°C and +260°C.
2. Low temperature resistance. It has excellent mechanical toughness in -180°C.
3. High lubricating property.
4. Excellent insulation property.
5. Nice non-sticky property.
6. Nonhazardous
7. Anti-corrosion.
8. Long durability

PTFE Products and attributes

2017-08-08 14:43:45 | PTFE Sheet
PTFE's mechanical properties are low compared to other plastics, and can be used over a wide temperature range of -100°F to +400°F (-73°C to 204°C). ). It has excellent thermal and electrical insulation properties and a low coefficient of friction. PTFE is very dense and cannot be processed by melting. PTFE must be compressed and sintered to form useful shapes. 
PTFE Sheet, Rod, & Tube - Thermal stability PTFE is one of the most thermally stable plastic materials. There are no appreciable decompositions at 260°C, so that PTFE, at this temperature, still possesses most of its properties. Appreciable decomposition begins at over 400°C.

PTFE Transition points -The geometry of the PTFE molecules (crystalline structure) varies with the temperature. There are different transition points, with the most important ones being the following: that at 19°C corresponding to a modification of some physical properties and that at 327°C which corresponds to the disappearance of the crystalline structure: the PTFE assumes an amorphous aspect conserving its own geometric form.

PTFE Expansion -The linear thermal expansion coefficient varies with the temperature. In addition, because of the orientation caused by the working process, the PTFE pieces are generally anisotropic; in other words, the coefficient of expansion varies also in relation to direction.

PTFE Thermal conductivity -The coefficient of the thermal conductivity of PTFE does not varies with the temperature. It is relatively high, so that PTFE can be considered to be a good insulating material. The mixing of suitable fillers improves the thermal conductivity (see filled PTFE).

PTFE Specific heat -The specific heat, as well as the heat content (enthalpy) increases with the temperature.

PTFE Behaviour in presence of foreign agents

PTFE Resistance to chemical agents -PTFE is practically inert against known elements and compounds. It is attacked only by the alkaline metals in the elementary state, by Chlorine trifluoride and by elementary Fluorine at high temperatures and pressures.

PTFE Solvent resistance -PTFE is insoluble in almost all solvents at temperatures up to about 300°C. Fluorinated hydrocarbons cause a certain swelling which is however reversible; some highly fluorinated oils, at temperatures over 300°C, exercise a certain dissolving effect upon PTFE.

PTFE Resistance to atmospheric agents and light -Test pieces of PTFE, exposed for over twenty years to the most disparate climatic conditions, have not shown any alteration of their characteristic properties.

PTFE Resistance to radiations -High energy radiations tend to cause the breaking of the PTFE molecule, so that the resistance of the product to radiations is rather poor.

PTFE Gas permeability -The permeability of PTFE is similar to other plastic materials. The permeability does not depend, obviously, only on the thickness and pressure, but also on the working techniques.
Physical - mechanical properties

Tensile and compressive properties These properties are to a large degree influenced by the working processes and the employed powder. PTFE, however, can be used continuously at temperatures up to 260°C, while possessing still a certain compressive plasticity at temperatures near to the absolute Zero.

PTFE Flexibility -PTFE is quite flexible and does not break when subjected to stresses of 0,7 N/mm2 according to ASTM D 790. Flexural modulus is about 350 to 650 N/mm2 at room temperature, about 2000 N/mm2 at -80°C, about 200 N/mm2 at 100°C and about 45 N/mm2 at 260°C.

Impact properties -PTFE possesses very high resilience characteristics also at low temperatures.

Plastic memory -If a piece of PTFE is subjected to tensile or compression stresses below the yield point, part of the resulting deformations remain (as permanent deformations) after the discontinuance of the stresses, with the result that certain strains are induced in the piece. If the piece is reheated, these strains tend to release themselves within the piece which resumes its original form. This property of the PTFE is commonly indicated as "plastic memory" and is made use of in different applications.

Also most of the semi-finished products, because of the transformation processes, possesses similar strains, to a certain degree. When it is desired to obtain semi-finished parts dimensionally stable at high temperatures, it is possible to subject the parts to a temperature of 280°C for one hour every 6 mm of thickness and then cool them slowly. The parts obtained in this manner are almost completely free from internal strains and are in general known as "conditioned" or "thermostabilised" material.

Hardness -The hardness Shore D, measured according to the method ASTM D 2240, has values comprised between D50 and D60. According to DIN 53456 (load 13,5 Kg for 30 sec) the hardness sways between 27 and 32 N/mm2.

Friction -PTFE possesses the lowest friction coefficients of all solid materials; between 0.05 and 0.09:

* the static and dynamic friction coefficients are almost equal, so that there is no seizure or stick-slip action
* when increasing the load, the friction coefficient decreases until reaching a stable value
* the friction coefficient increases with the speed
* the friction coefficient remains constant at temperature variations.

Wear -The wear depends upon the condition of the other sliding surface and obviously depends upon the speed and loads. The wear is considerably reduced when adding suitable fillers to the PTFE (see filled PTFE).
Electrical properties

PTFE Insulation -PTFE is an excellent insulator and precious dielectric as shown by the relative data reported in datasheet and maintains these characteristics throughout a large range of environmental conditions, temperatures and frequencies.

Dielectric strength -The dielectric strength of PTFE varies with the thickness and decreases with increasing frequency. It remains practically constant up to 300°C and does not vary even after a prolonged treatment at high temperatures (6 months at 300°C). It depends also upon the transformation processes.

Dielectric constant and dissipation factor -PTFE has very low dielectric constant and dissipation factors values; these remain unvaried until 300°C, in a frequency field of up to 109 Hz even after a prolonged thermal treatment (6 months at 300°C). The dielectric constant, dissipation factor as well as the volume resistivity and surface resistivity, considered as being independent from the transformation processes.

Arc-resistance -PTFE has a good resistance to the arc. The arc resistance time according to ASTM D 495 is 700 sec..
After a prolonged action there are no signs of surface charing.

Corona effect resistance -The discharges caused by the corona effect may result in erosions of the PTFE surface which, nevertheless, is indicated as a suitable insulator in case of high potential differences.
Surface properties

The molecular configuration of PTFE brings to its surfaces a high anti-adhesiveness. For the same reason these surfaces are hardly wettable, the contact angle with water is about 110° and it is possible to affirm that, beyond a surface tension of 20 dine/cm, the liquid no longer wets the PTFE. A special etching treatment renders the surfaces bondable and wettable.

Source:https://www.sukoptfe.com/ptfe-products-and-attributes

PTFE Sheet and Film

2017-08-04 16:29:45 | PTFE Sheet

PTFE is a fluorocarbon-based polymer that exhibits astonishing chemical resistance and ultra high-purity. Self-lubricating and with a low friction coefficient, PTFE sheets and rods are ideally suited for the manufacture of high-temperature seals, insulators and bearings used in semiconductor, aerospace & chemical processing industries. PTFE's low coefficient of friction makes it suitable for applications where sliding action of parts is needed: such as plain bearings, gears, and slide plates. In these applications, it performs significantly better than nylon and acetal; and is comparable to UHMW. PTFE however can be used over a far wider temperature range than these materials; -100°F to +400°F (-73°C to 204°C) and offers superior electrical insulation properties. Although its' mechanical properties are low compared to other engineering plastics, those properties can be enhanced through the use of additives such as Carbon, Graphite, Bronze, and Glass Fiber.

PTFE has the highest melting point and is capable of continued service at 500F(260 C). FEP is a melt processible resin capable of continued service at 400F(204 C). PTFE products are used as gasket and packing materials in chemical processing equipment; as electrical insulation for maximum reliabillity; and in bearings, seals, piston rings and other mechanical applications, especially those requiring anti-stick characteristics. PTFE has excellent thermal and electrical insulation properties. And, it has a low coefficient of friction. It is difficult to make anything adhere to PTFE. A material may stick to it, but the material can be peeled off or rubbed off.