パソコン心電計とその接続パソコン

メディカルテクニカが輸入販売する最先端医療機器の国内販売店募集

arterial hemodynamics

2013-12-23 21:51:36 | 循環器

American Journal of Hypertension

ajh.oxfordjournals.org

Am J Hypertens (2005) 18 (S4): 15A. doi: 10.1016/j.amjhyper.2005.03.035

P-17: A new and fast screening method for measuring complex hemodynamical parameters and arterial stiffness non-invasively with a simple arm cuff

Miklos Illyes1

+ Author Affiliations

1TensioMed Ltd., TensioMed Ltd, Budapest, Hungary

Abstract

Aims: In a project of the National Research Program of Hungary, we studied if oscillometric signals received during an oscillometric BP measurement contain any information about arterial hemodynamics

Materials, Methods: We have developed a research tool by which not only SBP, DBP, HR data, but the complete oscillometric signals were stored and transmitted telemedically to our computer center from the home of 650 patients who performed BP measurements at least 4 times a day, for at least 1 month. Through this a large database was collected, containing more than 1700000 oscillometric pulse curves and the relevant clinical data of patients. For data mining we used Kohonen's self-organising map method. Non-invasively recorded oscillometric curves from the upper arm cuff were validated by the simultaneously recorded intraarterial pressure curve of brachial artery.

Results: Our researches showed that oscillometric pulse curve of the brachial artery is identical to the intraarterial pressure curve if the cuff was inflated to suprasystolic pressure, preferably 35 mmHg above the SBP. Thus the early and the late systolic pressure peak, the closing incisure of the aortic valve can be recognizable, and several hemodinamical parameters could be calculated.

By using the mentioned results of basic researches, a new instrument, the TensioClinic Arteriograph was developed, by which the following parameters could be measured within 2 minutes, by using a simple upper arm cuff:

SBP, DBP, HR, MAP, PP, augmentation index (AIx), normalized augmentation index to 80/min heart rate (AIx80), return time of the pulse wave of the aorta (RT), pulse wave velocity (PWV) of the aorta, length of the cardiac cycle, area of systolic (SAI) and diastolic (DAI) part of pulse curve.

Validation studies of the new method to control the accuracy of measured AIx and PWV showed high correlations (R = 0,76 and R = 0,8) with values measured with other non-invasive methods (Sphygmocor and Complior) respectively.

Conclusions: Due to the swiftness, simplicity and good reproducibility of this method and apparatus, the non-invasive assessment of the most important hemodynamical parameters and arterial stiffness had become available for population screening, opening a new window in the detection of the early phase of the athero- and arteriosclerosis, and thus it can play an important role in the reduction of the CV morbidity and mortality.

 


cardiac output results measured by the NICaS versus thermodilution

2013-12-23 09:34:41 | ICU手術室

Physiol. Meas. 27 (2006) 817–827 doi:10.1088/0967-3334/27/9/005
Impedance cardiography revisited
G Cotter1, A Schachner2, L Sasson2, H Dekel2 and Y Moshkovitz3
1 Divisions of Clinical Pharmacology and Cardiology, Duke University Medical Center, Durham,
NC, USA
2 Angela & Sami Sharnoon Cardiothoracic Surgery Department, Wolfson Medical Center, Israel
3 Department of Cardiac Surgery, Assuta Hospital, Petah Tikva, Israel
E-mail: gad.cotter@duke.edu
Received 7 February 2006, accepted for publication 9 June 2006
Published 5 July 2006
Online at stacks.iop.org/PM/27/817
Abstract
Previously reported comparisons between cardiac output (CO) results in
patients with cardiac conditions measured by thoracic impedance cardiography
(TIC) versus thermodilution (TD) reveal upper and lower limits of agreement
with two standard deviations (2SD) of approximately ±2.2 l min−1, a 44%
disparity between the two technologies. We show here that if the electrodes
are placed on one wrist and on a contralateral ankle instead of on the chest, a
configuration designated as regional impedance cardiography (RIC), the 2SD
limit of agreement between RIC and TD is ±1.0 l min−1, approximately
20% disparity between the two methods. To compare the performances of
the TIC and RIC algorithms, the raw data of peripheral impedance changes
yielded by RIC in 43 cardiac patients were used here for software processing
and calculating the CO with the TIC algorithm. The 2SD between the TIC
and TD was ±1.7 l min−1, and after annexing the correcting factors of the
RIC formula to the TIC formula, the disparity between TIC and TD further
declined to ±1.25 l min−1. Conclusions: (1) in cardiac conditions, the RIC
technology is twice as accurate as TIC; (2) the advantage of RIC is the use
of peripheral rather than thoracic impedance signals, supported by correcting
factors.
Keywords: cardiac output measurements, thoracic bioimpedance, whole-body
bioimpedance, impedance cardiography
Introduction
Three basic technologies are currently in use for impedance cardiography (ICG): (1) the
thoracic ICG (TIC), where the electrodes are placed on the root of the neck and the lower
part of the chest, being the dominant method in the market (Patterson et al 1964, Kubicek
0967-3334/06/090817+11$30.00 © 2006 IOP Publishing Ltd Printed in the UK 817
818 G Cotter et al
et al 1966, 1974); (2) the whole-body ICG (ICGWB), where four pairs of electrodes are used,
one pair on each limb (Tischenko 1973, Koobi et al 1999); (3) the regional ICG (RIC), a
technology which is used by the NICaS (noninvasive cardiac system). In this technology,
which is the subject of this report, only two pairs of electrodes are used, performing best
when placed on one wrist and on the contralateral ankle (Cohen et al 1998, Cotter et al 2004,
Torre-Amione et al 2004).
Two comprehensive reviews of the literature on clinical experience in measuring the
cardiac output (CO) by TIC determined that in patients with cardiac conditions the TIC-CO
results are unreliable (Raaijmakers et al 1999, Handelsman 1991). According to Patterson
(1985) andWang et al (2001), a number of sources in the chest, such as the lungs, vena cava, and
systemic and pulmonary arterial vasculatures, generate systolic impedance reductions, while
the heart generates signals of increased impedance. In addition to thesemultifarious sources of
Z,4 variations in the electrical conductivities between the sources of impedance changes and
the TIC electrodes (Kim et al 1988, Kauppinen et al 1998), and between the various impedance
sources (Wtorek 2000) have been described. These model experimentations indicated that
the thoracic Z is not a reliable signal for calculation of the SV due to the multiple sources
of dZ/dt (Kim et al 1988, Wang and Patterson 1995, Kauppinen et al 1998, Wtorek 2000),
providing the explanations for the above-mentioned unsatisfactory clinical results obtained by
TIC (Raaijmakers et al 1999, Handelsman 1991).
In this report, an attempt is made to define the differences between the peripheral and
thoracic impedance signals, and based on this, to explain the differences in the performance
of RIC and TIC.
As we are capable of saving raw data from the wrist–ankle (peripheral) impedance
signals, we were able to use the peripheral impedance waveforms and base impedance values
to calculate stroke volumes, using various algorithms that have been associated with TIC
calculations. This enabled us to prove that (1) the performance of RIC is twice as accurate
as reported TIC results; (2) the reasons for this are as follows: (a) the impedance changes
which are yielded by the limb electrodes are more suitable than the impedance changes of
the thoracic electrodes for calculating the stroke volume and (b) the use of properly designed
coefficients improved the accuracy of the CO results by at least an additional 25%.
Methods
The data for this project were gathered from two patient series. In both, comparisons were made
between cardiac output results measured by the NICaS versus thermodilution. One series,
which was studied in hospital A, consisted of 30 patients who were studied immediately upon
arrival at the ICU following an open heart operation. In 11 (36%), despite the intravenous
administration of adrenalin, cardiac index (CI) was lower than 2.5 l min−1 m−2. The second
series included 13 cases of acute heart failure that were studied in hospital B. CI was lower
than 2.5 l min−1 m−2 in seven (54%), and in the combined group of 43 cases of the two
hospitals, it was lower than 2.5 l min−1 m−2 in 18 (43%).
The purpose of this study was to use peripheral impedance waveforms to calculate stroke
volume by means of four different ICG algorithms and to compare each of these SV values
with the thermodilution SV result.
Of the 55 and 31 studies conducted in hospitals A and B, respectively, raw data were
successfully retrieved from only the last 30 consecutive patients of hospital A and the last 13
4 In the ICGWB and RIC, where the impedance changes are depicted in the periphery, the impedance value is
automatically converted into the real parts (R0 and R) of the measured impedance signals (Lamberts et al 1984).


Predicting Future Cardiovascular Events

2013-12-23 09:29:51 | 循環器

The Scientific World Journal
Volume 2013 (2013), Article ID 792693, 6 pages
http://dx.doi.org/10.1155/2013/792693

Clinical Study

Evaluation of Arterial Stiffness for Predicting Future Cardiovascular Events in Patients with ST Segment Elevation and Non-ST Segment Elevation Myocardial Infarction

Oguz Akkus,1 Durmus Yildiray Sahin,2 Abdi Bozkurt,3 Kamil Nas,4 Kazım Serhan Ozcan,1 Miklós Illyés,5 Ferenc Molnár,6 Serafettin Demir,7 Mücahit Tüfenk,3 and Esmeray Acarturk3

1Sanliurfa Siverek State Hospital, 63600 Sanliurfa, Turkey
2Department of Cardiology, Adana Numune Training and Research Hospital, Adana, Turkey
3Department of Cardiology, Faculty of Medicine, Cukurova University, Adana, Turkey
4Department of Radiology, Szent János Hospital, Budapest, Hungary
5Heart Institute, Faculty of Medicine, University of Pécs, Pécs, Hungary
6Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
7Department of Cardiology, Adana State Hospital, Adana, Turkey

Received 18 August 2013; Accepted 15 September 2013

Academic Editors: H. Kitabata and E. Skalidis

Copyright © 2013 Oguz Akkus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background. Arterial stiffness parameters in patients who experienced MACE after acute MI have not been studied sufficiently. We investigated arterial stiffness parameters in patients with ST segment elevation (STEMI) and non-ST segment elevation myocardial infarction (NSTEMI). Methods. Ninety-four patients with acute MI (45 STEMI and 49 NSTEMI) were included in the study. Arterial stiffness was assessed noninvasively by using TensioMed Arteriograph. Results. Arterial stiffness parameters were found to be higher in NSTEMI group but did not achieve statistical significance apart from pulse pressure . There was no significant difference at MACE rates between two groups. Pulse pressure and heart rate were also significantly higher in MACE observed group. Aortic pulse wave velocity (PWV), aortic augmentation index (AI), systolic area index (SAI), heart rate, and pulse pressure were higher; ejection fraction, the return time (RT), diastolic reflex area (DRA), and diastolic area index (DAI) were significantly lower in patients with major cardiovascular events. However, PWV, heart rate, and ejection fraction were independent indicators at development of MACE. Conclusions. Parameters of arterial stiffness and MACE rates were similar in patients with STEMI and NSTEMI in one year followup. The independent prognostic indicator aortic PWV may be an easy and reliable method for determining the risk of future events in patients hospitalized with acute MI.

1. Introduction

Acute myocardial infarction (AMI) continues a worldwide cause of mortality [1]. In-hospital and 6-month-mortality are approximately 5–7% versus 12-13%, respectively [2, 3]. Estimated risk of mortality for AMI is based on the clinical status of the patients [4]. Recent studies showed that conventional risk factors are inadequate for predicting cardiovascular (CV) mortality and morbidity. A novel risk factor called arterial stiffness, which is a defined reduction of the compliance of arterial wall, and relationship between coronary heart disease (CHD) have been demonstrated. Arterial stiffness results in faster reflection of the forward pulse wave from bifurcation points in peripheral vessels. As a result of new waveform, systolic blood pressure (SBP) increases, diastolic blood pressure (DBP) decreases, cardiac workload increases, and coronary perfusion falls down. It plays a major role in the determination of cardiovascular outcomes, and it is not inferior to the traditional risk factors to assess the future risk [5, 6]. Elevated arterial stiffness is associated with increased major adverse cardiovascular events (MACE) such as unstable angina, AMI, coronary revascularization, heart failure, stroke, and death [7]. Arterial stiffness parameters including mean arterial pressure (MAP), pulse pressure (PP), PWV (m/s), and augmentation index (AI) are directly proportional to the risk of MACE [810].

PWV is a susceptible diagnostic element, and it is also involved in risk stratification for subclinical organ damages [11]. Few studies regarding arterial stiffness demonstrated that PWV exhibits a close effect with coronary heart disease [5, 12, 13]. Whether arterial stiffness parameters are related to MACE after acute MI has not been studied sufficiently. The aim of our study was to compare arterial stiffness parameters in patients with ST segment elevation (STEMI) and non-ST segment elevation myocardial infarction (NSTEMI) and to validate its prognostic value.

2. Patients

Ninety-four patients with acute MI (72 men and 22 women, mean age 60,41 ± 11,17) were included in the study. There were 45 STEMI and 49 NSTEMI. Data of patients were analyzed within 24 hours after hospitalization. All patients received eligible treatment according to ESC guidelines. The choice of preparations was entrusted to the investigator. Hemodynamically compromised patients (Killip classifications II, III, and IV), patients with chronic atrial fibrillation and/or flutter, chronic renal failure, mild-severe valvular heart diseases and other chronic diseases were excluded. Our local ethics committee approved the study, and written informed consent was obtained from all participants. Patients were followed up for 12 months.

3. Diagnosis of Acute Myocardial Infarction

Diagnosis of AMI was based on symptoms, elevated cardiac markers, and electrocardiogram (ECG) changes. Patients with typical chest pain plus ECG changes indicative of an AMI (pathologic Q waves, at least 1 mm ST segment elevation in any 2 or more contiguous limb leads or new left bundle branch block, or new persistent ST segment and T wave changes diagnostic of a non-Q wave myocardial infarction) or a plasma level of cardiac troponin-T level above normal.

4. Laboratory Findings

Troponin T, creatine kinase-MB fraction (CK-MB), serum urea, creatinine, eGFR, and other hematological parameters were checked at the admission.

Risk factors, such as hypertension, hyperlipidemia, diabetes mellitus, cigarette smoking, and family history, were recorded. Hypertension was considered as SBP and DBP greater than 140 mmHg and 90 mmHg, respectively, using an antihypertensive medication. Diabetes mellitus, hyperlipidemia, and hypertriglyceridemia were defined as using antidiabetic drugs or fasting blood glucose over 126 mg/dL, as plasma low-density lipoprotein cholesterol (LDL-C) >130 mg/dL, using lipid-lowering drugs at the time of investigation, and as TG level >150 mg/dL, respectively, according to the Third Report of the National Cholesterol Education Program guidelines. First-degree relatives who are exposed to coronary artery disease (CAD) before the age for male is <55 and female <65 were considered as family history.

5. Pulse Waveform Analysis

Assessment of arterial stiffness was performed noninvasively with the commercially available TensioMed Arteriograph. We collected the oscillometric pulse waves from the patients. We measured the distance between the jugulum-symphysis (which is equal to the distance between the aortic root and the aortic bifurcation), and PWV was calculated. Pulse waves were recorded at suprasystolic pressure. The oscillation signs were identified from the cuff inflated at least >35 mmHg above the systolic blood pressure. In this state there was a complete brachial artery occlusion, and it functions as a membrane before the cuff. Pulse waves hit the membrane, and oscillometric waves were measured by the device and we could see the waveforms on the monitor. The AI was defined as the ratio of the difference between the second (P2 appearing because of the reflection of the first pulse wave) and first systolic peaks (P1 induced by the heart systole) to pulse pressure (PP), and it was expressed as a percentage of the ratio (AI = [P2 − P1]/PP × 100). SBP, DBP, PP, and heart rate and other hemodynamic parameters as return time (RT in sec.), diastolic reflection area (DRA), systolic area index (SAI %), and diastolic area index (DAI %) were measured noninvasively. DRA reflects the quality of the coronary arterial diastolic filling (SAI and DAI are the areas of systolic and diastolic portions under the pulse wave curve of a complete cardiac cycle, resp.). Hence, the bigger the DAI and DRA are, the better the coronary perfusion is. Furthermore, RT is the PWV time from the aortic root until the bifurcation and return, so this value is smaller as the aortic wall is stiffer.

 


original, patented oscillometric method

2013-12-18 08:56:58 | 脳血管障害
The Arteriograph
Arteriograph is a new diagnostic method that can offer reliable and easily understandible information for the patient about endothelial function, central blood pressure and large artery characteristics, which independently and all together are significant determinants of cardiovascular risk.
Medical research over the past decade has provided new possibilities for identifying early stage arterial stiffening via testing of large artery compliance. A significant number of broad, international studies and conclusions, and international studies designated as “evidence-based medicine” support the effectiveness of arterial stiffness related to cardiovascular disease and its prediction. Previously these important characteristics could only be tested under clinical conditions. As a result of the change in approach in this area, devices that are easy and safe to use have appeared, which are able to measure the parameters that indicate arterial function.
The Arteriograph, developed in Hungary and patented in over 30 countries, can measure in a procedure performed on a patient, similarly to a blood pressure measurement, the biological characteristics of the condition of the arteries, which independent of the other well-known classic risk factors (age, sex, blood pressure, cholesterol level, smoking habits), reliably indicates the cardiovascular condition of an asymptomatic patient and his/her risk level, and also assists in adjusting existing blood pressure reduction therapy to an exact and individualized level.

This original, patented oscillometric method, which has also been proven invasively, obtains information from the analysis of the pulse pressure curve registered in the upper arm. The special, so-called stop-flow method, i.e. the complete occlusion of the brachial artery eliminates the distortion of the pressure curve, so that the pressure curves are clearly recognizable and suitable for analysis. The occlusive measurement period lasts just a few seconds. The analytic software does not employ a mathematically generalized transfer function. The determination of the position and the amplitude of the reflective wave enable simultaneous and simple determination of pulse wave velocity, the augmentation index and the central blood pressure, as well as complementing the traditional blood pressure measurement data (systolic, diastolic blood pressure, arterial medial pressure, pulse) with further hemodynamic parameters.


Pulse Decomposition Analysis of the digital arterial pulse

2013-12-11 09:47:40 | ICU手術室
Pulse Decomposition Analysis of the digital arterial pulse during hemorrhage simulation
Markers of temporal changes in central blood volume are required to non-invasively detect hemorrhage and the onset of hemorrhagic shock. Recent work suggests that pulse pressure may be such a marker. A new approach to tracking blood pressure, and pulse pressure specifically is presented that is based on a new form of pulse pressure wave analysis called Pulse Decomposition Analysis (PDA). The premise of the PDA model is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses, the first of which is due to the left ventricular ejection from the heart while the remaining component pressure pulses are reflections and re-reflections that originate from only two reflection sites within the central arteries. The hypothesis examined here is that the PDA parameter T13, the timing delay between the first and third component pulses, correlates with pulse pressure.
T13 was monitored along with blood pressure, as determined by an automatic cuff and another continuous blood pressure monitor, during the course of lower body negative pressure (LBNP) sessions involving four stages, -15 mmHg, -30 mmHg, -45 mmHg, and -60 mmHg, in fifteen subjects (average age: 24.4 years, SD: 3.0 years; average height: 168.6 cm, SD: 8.0 cm; average weight: 64.0 kg, SD: 9.1 kg).
Results
Statistically significant correlations between T13 and pulse pressure as well as the ability of T13 to resolve the effects of different LBNP stages were established. Experimental T13 values were compared with predictions of the PDA model. These interventions resulted in pulse pressure changes of up to 7.8 mmHg (SE = 3.49 mmHg) as determined by the automatic cuff. Corresponding changes in T13 were a shortening by -72 milliseconds (SE = 4.17 milliseconds). In contrast to the other two methodologies, T13 was able to resolve the effects of the two least negative pressure stages with significance set at p < 0.01.
Conclusions
The agreement of observations and measurements provides a preliminary validation of the PDA model regarding the origin of the arterial pressure pulse reflections. The proposed physical picture of the PDA model is attractive because it identifies the contributions of distinct reflecting arterial tree components to the peripheral pressure pulse envelope. Since the importance of arterial pressure reflections to cardiovascular health is well known, the PDA pulse analysis could provide, beyond the tracking of blood pressure, an assessment tool of those reflections as well as the health of the sites that give rise to them.


非観血 ワイヤレス 連続 相対血圧 ケアテイカと観血血圧との相関

2013-12-11 09:44:52 | ICU手術室
Comparison of Blood Pressures obtained with the
Pulse Decomposition Algorithm and Intra-Arterial
Catheters in ICU Patients

Introduction

The object of the work presented here was to validate a new approach to tracking blood pressure that is
based on the pulse analysis of the peripheral arterial pressure pulse. The approach, referred to as the
Pulse Decomposition Analysis (PDA) model, goes beyond traditional pulse analysis by invoking a
physical model that comprehensively links the components of the peripheral pressure pulse
envelope with two reflection sites in the centralarteries. The first reflection site is the juncture
between thoracic and abdominal aorta, which is marked by a significant decrease in diameter and a
change in elasticity. The second site arises from the juncture between abdominal aorta and the common
iliac arteries.

The PDA model integrates and goes beyond the findings of a number of studies that have confirmed
the existence of the two reflection sites. [Kriz 2008,
Latham 1985] A consequence of these reflection sites are two reflected arterial pressure pulses, referred
to as component pulses, which counter-propagate to the direction of the single arterial pressure pulse,
due to left ventricular contraction, that gave rise to them. The scenario, sketched in Figure 1, has been
described in detail elsewhere. [Baruch 2011] In the arterial periphery, and specifically at the radial or
digital arteries, these reflected pulses, the renal reflection pulse (P2, also known as the second systolic
pulse) and the iliac reflection pulse (P3), arrive with distinct time delays. In the case of P2 the delay is
typically between 70 and 140 milliseconds, in the case of P3 between 180 to 450 milliseconds.

Quantification of physiological parameters is accomplished by extracting pertinent component pulse
parameters. In the case of the beat-by-beat tracking of blood pressure the PDA model’s predictions and
previous experimental studies have shown that two pulse parameters are of particular importance. The
ratio of the amplitude of the renal reflection pulse (P2) to that of the primary systolic pulse (P1) tracks
changes in beat-by-beat systolic pressure. The time difference between the arrival of the primary
systolic (P1) pulse and the iliac reflection (P3) pulse, referred to as T13, tracks changes in arterial pulse
pressure.

Patients and Methods

In these experiments, approved by the University of Virginia Medical Center Review Board, the arterial
blood pressures of patients (23 m/11 f, mean age: 44.05 y, SD: 13.9 y, mean height: 173.3 cm, SD: 9.4
cm, mean weight: 95.3 kg, SD: 27.4 kg) hospitalized in the University of Virginia Medical Intensive Care
Unit (MICU) were monitored using radial intra-arterial catheters, while the CareTaker system collected
pulse line shapes at the lower phalange of the thumb. The overlap recording sessions with both
monitoring systems were scheduled for four hours but were frequently shorter because of medical
procedures. BedMaster (Excel Medical, Jupiter, FL) hardware and software was used to digitize and
record intra-arterial waveform data from the GE Unity network at a sample rate of 240 Hz.

Consent for data collection was obtained for 60 patients, and 34 successful data overlaps between
arterial catheter and CareTaker were obtained. Eleven arterial data sets were lost because of a
programming error in the BedMaster software, causing data to be overwritten when the overall arterial
catheter recording session extended beyond one day after the CareTaker/arterial catheter overlap
recording window. In 4 cases the BedMaster system was found to have been inoperative during the
recording window. In 4 cases the arterial catheter recordings did not include the overlap recording
window for unknown reasons, while in 4 additional cases the arterial catheter failed. Two cases involved
such substantial movement artifacts due to movement, extubation etc. that neither system was able to
obtain valid recordings. In one case the CareTaker device became accidently disconnected early in the
session.

A. CareTaker Device and PDA model

The hardware platform, which is the Care-Taker device (Empirical Technologies Corporation,
Charlottesville, Virginia) the model, and the algorithm implementation have been described in detail
elsewhere [Baruch].

B. Statistical analysis

We present regression coefficients and linear fits between arterial catheter blood pressures and the PDA
parameters P2P1 and T13 for an individual patient, histogram distributions of the slopes of the linear fits
for individual patients, as well as overall linear fit-based comparisons between central catheter blood
pressures and blood pressures obtained from the PDA parameters using a single set of conversion
constants. Bland-Altman comparisons of the two sets of blood pressures are also provided.

C. Data Inclusion

Data were excluded from analysis on the following basis:
In the case of the arterial catheter data the criteria for exclusion were as follows: A. visual inspection of
the data was used to identify sections of obvious catheter failure, characterized by either continuous or
pervasive intermittent analog/digital readings of -/+32768. B. sections contaminated by excessive
motion artifact were identified as such if the peak detection algorithm was no longer able to identify

FactorTime (Seconds)
heart beats, as evidenced by inspection of the resulting implausible and discontinuous inter-beat
interval spectrum.

In the case of the CareTaker data a Fourier spectral analysis approach was used to establish a
signal/noise factor (SNF) to identify poor quality data sections. To this end the standard deviations and
integrated amplitudes of different spectral bands were calculated. The band associated with the
physiological signal was chosen from 1-10 Hz, based on data by the authors and published results by
others. The signal strength associated with this band was compared with those of the 100-250 Hz
frequency band, which is subject to ambient noise but contains no physiologically relevant signal. The
spectrogram (top graph) displayed in figure 10 provides a motivation. Data sections characterized by low
noise feature low high-frequency spectral amplitudes and high low-frequency spectral amplitudes as
well as “structured” physiological bands, i.e. significant amplitude variations between the harmonic
bands. This motivates the analytical form of the SNF parameter, which is established by taking the ratio

A-line DiastoleTime (Seconds)
of the standard deviation of the 1-10 Hz band to the product of the integrated band strengths of the 1-
10 Hz and 100-250 frequency bands. The bottom graph of Figure 2 displays the SNF parameter for the
raw CareTaker data presented in the center graph of Figure 2. Data sections with an SNF below 80 were
excluded from the analysis.

Results

The overlap of the CareTaker data streams and the central catheter data streams was established, after
an initial alignment based on data collection systems clocks, by matching time-based inter-beat interval
spectra obtained via pulse detection obtained from both data streams. Figure 3 presents an example of
such an overlap for patient 21. The figure presents both an overall overlay of the data streams, as well
as a 70 second expanded section.

The linear model used to perform the conversion of the P2P1 parameters to systolic blood pressure for
patient 21 was (140 × P2P1 (unitless ratio) + 59.2), while the corresponding linear conversion for the T13
parameter to pulse pressure was (0.1 × T13 (milliseconds) + 13.6). Both the offsets and the slope factors
were patient-specific and obtained by chi^2 minimization of the fit of both data streams. The details of
obtaining the slope factor and the offset for individual patients, as well as the physiological relevance of
the slope factor regarding arterial stiffness, are discussed later.

In figures 9 and 10 we present the correlation and Bland-Altman results for the interbeat interval data
for patient 21, which was presented in Figure 2. The data presented in the Bland-Altman plot of figure 9
demonstrates the resolution limits of the data streams, which presents itself as diagonally-running
striations that are visible in the data. Had the data rate in both data streams been equal, the striations
would run at 45 degrees. In the case of the CareTaker data, the acquisition rate was 500 Hz, or a data
point spacing of 2.0 milliseconds, while the catheter-based data was collected at 240 Hz, corresponding
to a data point spacing of 4.16 milliseconds. Consequently the slope of the striations is 0.48, the ratio of
lower to higher data acquisition rate.

Overall Blood Pressure Results

The overall results of the study are presented as blood pressure correlations and Bland-Altman graphs in
figures 11 through 14. The data comparisons are based on two-second averages of 40-minute sections
from each patient. This approach is an established procedure that has been used in previous
presentations of comparative blood pressure data by others. 1 One important benefit of this approach is
that it gives equal weight to the data set of each patient

1 Martina JR et. al., Noninvasive continuous arterial blood pressure monitoring with Nexfin, Anesthesiology. 2012
May;116(5):1092-103.

Average Inter-beat Interval (Seconds))
mean: -0.056 millisecondsSD: 6.0 milliseconds
larger standard deviation observed here is affected by two factors: 1. the comparatively low sampling
rate of the catheter signal, 240 Hz corresponding to 4.2 milliseconds, and 2. the significantly broader
structure of the blood pressure pulse compared to the EKG signal. The first limits the temporal
resolution of peak detection, while the second limits the threshold accuracy with which a given peak can
be detected relative to other peaks, likewise introducing uncertainty into the temporal accuracy.