光りの進軍  光りよ通え・・・☆

合言葉は光の使命を果たす。
心一つに情報発信

第4世代原発、トリウム溶融塩炉 中国が開発を急ぐわけ  産経より

2014-04-06 14:12:33 | (英氏)原発・エネルギー問題
第4世代原発、トリウム溶融塩炉 中国が開発を急ぐわけ
2014.4.3 21:40 (1/6ページ)[九州から原発が消えてよいのか]

 2月7日。五輪開幕に合わせてロシア・ソチを訪問した中国の国家主席、習近平は、チェコのゼマン大統領と会談し、インフラ建設、新エネルギー、農業などについて2国間協力を進める意向を確認した。

 43時間のソチ訪問中、習近平が会談した元首級の要人は露大統領のプーチン、国連事務総長の潘基文、ギリシャ大統領のパプーリアス、アフガニスタン大統領のカルザイ、そしてゼマンだった。

 「世界の大国」を自任する中国に対し、チェコは中欧の要とはいえGDP世界52位の小国に過ぎない。しかも中国政府に弾圧されるチベット民族を支援しようと、公の施設にチベット旗を掲げたりする、中国にとって苦々しい相手だったはずだ。

 習近平は限られた時間をやりくりしてまで、なぜゼマンとの会談を望んだのか。それは、チェコが、第4世代原発といわれるトリウム溶融塩炉の開発競争の先陣を切っているからだと言われている。

   

× × ×

 原発は、言うまでもなく放射性物質の核分裂反応を利用した発電方法だ。ウランなど放射性物質の原子核は中性子を吸収すると核分裂を起こす。その際、膨大なエネルギーと一緒に中性子を放出する。放出された中性子が再び別の原子核に吸収され、核分裂する。

 原子炉では、核分裂反応を安定した状態で連鎖的に起こさなければならない。そのためには原子核に吸収されやすいよう中性子の速度を落とす「減速材」と、核燃料を冷やす「冷却材」が不可欠となる。

 軽水炉とは、濃縮ウランをペレット加工した固体燃料を「軽水=普通の水」に浸し、水が減速材と冷却材の役目を併せ持つタイプの原発を指す。水が扱いやすい上、原子炉制御が容易で事故の危険性が小さいことから、世界の原子力発電所のほとんどが軽水炉を採用している。



 日本国内の原発も軽水炉がほとんどを占めるが、実は2種類ある。核燃料から直接熱エネルギーを奪った軽水を蒸気とするのが、福島第1原発の沸騰水型軽水炉(BWR)。別系統の水に熱エネルギーを移して蒸気とするのが九州電力玄海原発(佐賀県玄海町)に代表される加圧水型軽水炉(PWR)だ。

 これに対し、トリウム溶融塩炉は、高温(500~700度)で液化した「溶融塩」にトリウムを混ぜて燃料とする。

 炉内には、減速材として柱状の黒鉛が並び、その中を溶融塩が流れ、核分裂反応を起こす。冷却材はポンプで対流させる溶融塩そのものだ。沸点が1430度なので気化することも、高圧にする必要もない。

   

× × ×

 実はトリウム溶融塩炉は新しい技術ではない。

 第2次世界大戦終結から間もない1950年代半ば、米・テネシー州のオークリッジ国立研究所がトリウム溶融塩炉の研究を本格的に始めた。1965年に実験炉の運転が始まり、最大7500キロワットの出力を達成した。実験炉は1969年まで無事故で運転した。

 だが、軽水炉との実用化競争に敗れ、歴史の表舞台から消えてしまった。理由は炉内でプルトニウムを生成しないため、冷戦下の米国に魅力的に映らなかったからだとされる。

 トリウム溶融塩炉が再び脚光を浴びたのは、東日本大震災の直前だった。

 2011(平成23)年1月。急速な経済発展に伴い、石炭火力による大気汚染と電力不足に悩む中国政府が、トリウム溶融塩炉の開発に取り組むことを表明した。

 先頭に立つのは、中国科学院副院長を務め、元国家主席、江沢民の息子でもある江錦恒だった。「なぜトリウム溶融塩炉なのか」。世界の原子力研究者は驚きの声を上げた。

http://sankei.jp.msn.com/images/news/140403/trd14040321470024-n1.jpg

レアアースの豊富な埋蔵量を誇る中国は、精錬の際に副産物として大量に出てくるトリウムの取り扱いに頭を悩ませてきた。加えてトリウム溶融塩炉ならば、軽水炉に必要な大量の水を確保できない内陸部でも建造することができる。

 この辺りが中国政府がトリウム溶融塩炉の開発に本腰を入れ始めた理由だとみられる。中国の動きは世界の原発の潮流を変える可能性を秘めている。

   

× × ×

 トリウム溶融塩炉の強みとは何なのか。

 まず事故対応が挙げられる。

 福島第1原発は、津波に起因する全電源喪失により、冷却材である軽水の循環がストップし、蒸発を続けた。冷却手段を失った核燃料がメルトダウン(炉心溶融)したことで、燃料表面のジルコニウム金属と水蒸気が化学反応を起こし、水素が大量に発生。1、3、4号機で水素爆発が起きた。

 オークリッジ国立研究所の実験などによると、トリウム溶融塩炉でも全電源喪失すれば溶融塩の対流が止まり、冷却機能を失う。この場合は、原子炉底部にある凝固弁が、高温となった溶融塩によって溶けて穴が開き、溶融塩は下の耐熱タンクに流れ落ちる。

 ところが、減速材である黒鉛から離れたことで核分裂反応は収束に向かい、溶融塩の特性から450度以下に冷えるとガラス固化体へ変化する。ガラス固化体は強い放射線を出すが、少なくとも気化した放射性物質を周囲にばらまくことはない。

 水を使っていないことから爆発の要因となる水素が発生することもない。

 余剰プルトニウムの問題も解決される。



 ウランを燃料とする軽水炉は、プルトニウムを含んだ使用済み核燃料を排出する。テロや核兵器への転用が懸念され、今年3月にオランダ・ハーグで開かれた核安全保障サミットでも余剰プルトニウムの取り扱いが議論された。

 これに対し、トリウムは、核分裂反応の“種火”としてプルトニウムを使うため、余剰プルトニウムの削減にも寄与できる。

 効率のよさも特筆に値する。軽水炉は沸点の低い水を使用することから熱効率は33%と低いが、トリウム溶融塩炉は45%前後まで向上する。核分裂反応が弱まれば、トリウムを炉内に溶かし入れるだけなので燃料棒の交換も不要だ。

 このような特性を考えると、放射性物質を含んだ溶融塩を熱交換器に安全に対流させる方法など課題はいくつもあるが、トリウム溶融塩炉は将来有望な新型原子炉だといえる。

 京都大や立命館大などでトリウム溶融塩炉の研究に長年携わってきた亀井敬史はこう語る。

 「今後の原発は、小型化・モジュール化が進むことは間違いありません。取り扱いが容易で最大出力1万~10万キロワット程度の小型原発に向いたトリウム溶融塩炉は、従来の大型軽水炉を補完する大きな可能性を秘めています。日本も本格的に研究すべきなのです」


 トリウム溶融塩炉だけではない。世界では「第4世代」と言われる新型原発の熾烈な開発競争が始まっている。

 世界にある原発は2013年1月現在で429基。その大半は第2世代(軽水炉)または第3世代(改良型軽水炉)に属する。

 その先を行く次世代原子炉の開発に向け、日米英仏など10カ国が「第4世代国際フォーラム」を結成したのは2001年7月だった。

 フォーラムは、2030年までの実用化を目指す新たな原子炉として、トリウム溶融塩炉をはじめ、軽水炉の進化版「超臨界圧軽水冷却炉」、冷却材にヘリウムガスを使う「超高温ガス炉」など6タイプを定めた。日本の高速増殖炉「もんじゅ」に代表されるナトリウム冷却高速炉も含まれる。

 どのタイプも、燃料の効率的利用、核廃棄物の最小化、核拡散の防止、安全性向上などを見込めるという。フォーラムには、後に中国や韓国、欧州原子力共同体(ユートラム)なども参加し、情報交換や協力を重ねながら各国が開発にしのぎを削っている。

 国際的な動きとは別に、マイクロソフト創業者のビル・ゲイツも2010年3月、劣化ウランを燃料に、冷却材にナトリウムを使った新型原発「進行波炉」(TWR)開発に数十億ドルという私財を投じると発表し、注目を集めた。

 第4世代開発だけではない。世界中に普及した軽水炉の技術革新も止まったわけではない。

 これまで以上に安全性を高め、ウラン燃料の燃焼効率を向上した改良型軽水炉が誕生し、国内外で採用されている。

 既存原発の技術進歩は日進月歩で続いている。九電は安全性向上と発電能力増強を目的に、平成18年に川内1号機の、22年川内2号機の蒸気タービンを三菱重工業製から独シーメンス製に交換。これにより年間発電量が3%上昇した。

 こうした既存原発の改良や新型原発の研究など、各国が原発技術の開発にしのぎを削るのは、逼迫(ひっぱく)するエネルギー需給への対応が急務だからだ。

 国際エネルギー機関(IEA)の見通しによれば、2030年の世界のエネルギー需要は石油に換算して159億7700万トン分。2000年の1・6倍に達する。世界規模の資源争奪戦はますます熾烈になるに違いない。各国が原発の技術開発に血眼になる理由もそこにある。

 だが、日本では、福島第1原発事故後、「脱原発ムード」という逆風に耐えかね、東京電力などの優秀な原発技術者が相次いで海外に流出している。

 現役世代だけではない。文部科学省によると、全国の大学の原子力関連学部への平成25年度志願者数は、計約440人と事故前から2割も減ってしまった。

 感情論からの「原発ゼロ」に流され、原子力技術を途絶させると、その影響はあらゆる分野に及ぶ。すでにその兆候は出ている。「技術立国・日本」の地位は大きくぐらついている。(敬称略)

最新の画像もっと見る

コメントを投稿