テンソル・ベクトル・スカラー重力とは2004年にベッケンシュタインが打ち立てたモノだが、ある意味で保守的な我らとしては、その認識のままで一般相対性理論を解釈できないだろうかということを考える・・。
現に、ここまでのユニバーサルフロンティア理論による考察結果にはアインシュタイン理論を超える結論はまったく内包されておらず、むしろ重力がまったくの幾何学によって表示されることに異論はない。テンソル場だけで表示されるのがアインシュタイン理論だとして、スカラー場が関与できるならばヒッグス機構による質量が重力源となる可能性を示唆できるし、三次元空間内における重力運動の進行方向たるベクトルを素粒子反応で表示できれば「一般相対性理論はそのままでテンソル・ベクトル・スカラー重力だ」ということにだってできる。
アインシュタインの「月はいつでもそこにある」を拡張して「月はいつでもそこにあり、太陽はいつでもあそこ、地球上に生息している我われはいつでもここにいる」(buturikyouiku)とする認識を広めたいw)
つまり、アインシュタインによる「宇宙に慣性系は存在せず強いて言えば短い自由落下系が近似的にそれにあたる」を拡張すれば「宇宙に静止状態は存在せずあえて述べれば穏やかな重力運動は静止していると同様である」ということになり、さらに「ただしブラックホール近辺とか潮汐力が無視できない環境下においては静止状態とは似ても似つかぬことになる」という話になる。だけどブラックホール周辺に一つの電子が落ちたことを考えたら潮汐力というよりも逆圧の問題なんだろうなあ~・・。
さて「もし、シュバルツシルト半径付近が混んでなくて電子一個が速やかに吸い込まれていったとしたら」電子はどのくらい発光するんだろうか?
このような究極の環境においては電子一個だとしても潮汐力から逃れられないのだろうか?
それにしても万有引力の向きというのは質量源に対して向心力な形であるのだけど、こうやって素粒子論とタイアップして重力を論じると、そのベクトル性というのは進行方向にこそ発揮されることになる。
残念ながら、まざまざとまだまだ神秘だということを思い知らされるよりも先に、私はユニバーサルフロンティア理論周辺だけの仕事をやることに心を決めた・・。
現に、ここまでのユニバーサルフロンティア理論による考察結果にはアインシュタイン理論を超える結論はまったく内包されておらず、むしろ重力がまったくの幾何学によって表示されることに異論はない。テンソル場だけで表示されるのがアインシュタイン理論だとして、スカラー場が関与できるならばヒッグス機構による質量が重力源となる可能性を示唆できるし、三次元空間内における重力運動の進行方向たるベクトルを素粒子反応で表示できれば「一般相対性理論はそのままでテンソル・ベクトル・スカラー重力だ」ということにだってできる。
アインシュタインの「月はいつでもそこにある」を拡張して「月はいつでもそこにあり、太陽はいつでもあそこ、地球上に生息している我われはいつでもここにいる」(buturikyouiku)とする認識を広めたいw)
つまり、アインシュタインによる「宇宙に慣性系は存在せず強いて言えば短い自由落下系が近似的にそれにあたる」を拡張すれば「宇宙に静止状態は存在せずあえて述べれば穏やかな重力運動は静止していると同様である」ということになり、さらに「ただしブラックホール近辺とか潮汐力が無視できない環境下においては静止状態とは似ても似つかぬことになる」という話になる。だけどブラックホール周辺に一つの電子が落ちたことを考えたら潮汐力というよりも逆圧の問題なんだろうなあ~・・。
さて「もし、シュバルツシルト半径付近が混んでなくて電子一個が速やかに吸い込まれていったとしたら」電子はどのくらい発光するんだろうか?
このような究極の環境においては電子一個だとしても潮汐力から逃れられないのだろうか?
それにしても万有引力の向きというのは質量源に対して向心力な形であるのだけど、こうやって素粒子論とタイアップして重力を論じると、そのベクトル性というのは進行方向にこそ発揮されることになる。
残念ながら、まざまざとまだまだ神秘だということを思い知らされるよりも先に、私はユニバーサルフロンティア理論周辺だけの仕事をやることに心を決めた・・。