gooブログはじめました!

アサブロ記事(http://yabu.asablo.jp/blog/)の一部を転載しました.

Charge Transfer Process in Dielectric Barrier Discharge

2019-05-24 10:49:51 | 電離気体現象
Charge Transfer Process in Dielectric Barrier Discharge
-Essential Difference between DBD and Glow Discharge-


最近の傾向として,放電形態を見かけの状態から確たる検証をしないまま,プラズマとかグロ-放電とか表現してしまうことが多いように思われる.放電形態の厳密な定義にしたがうことが大切だろう.DBD (Dielectric Barrier Discharge)においてもある混同が見られる.そこでDBDとRF放電,グロ-放電との本質的な違いについて一考してみた.

Abstract
In the DBD (Dielectric Barrier Discharge), the surface of the dielectrics on the electrodes are charged up nearly applied voltage after a very short time from the beginning of the discharge and then the discharge is quenched, The electrons, which are charged up on the surface of dielectrics, play a role of the initial electrons in electron avalanche, when the gap is applied a high voltage of inverse polarity opposite to the preceding discharge, The discharge is never sustained in steady state. In order to continue the short pulse discharge, it is necessary to apply an AC voltage. While the discharge is happening, only the displacement current flows due to the charge transfer process.We discuss the charge transfer process in DBD and also clarify the essential difference between DBD and other discharges.
DBD is distinguished from the RF discharge by the operating frequency range. DBD in which the charge transfer by ion drift is to operate in much lower frequency than that of RF discharge.
The essential difference between DBD and glow discharge is the presence or absence of the effect of electron emission by ion bombardment on the negative electrode. In DBD the electron emission from the electrode is never required. Even if the DBD might look like an apparent glow discharge, it would not be referred to as a glow discharge.

slide

補遺
プラズマ よく間違える例 破壊前駆現象における発光気体. 代表例としてタウンゼント放電(正イオンの空間電荷層を速い電子が走っている放電形態でありプラズマ状態にはなっていない) 一般に高インピーダンス放電においてはプラスマは発生していない.


A Comment on Formative Time Lag of Gaseous Breadown

2019-05-24 10:18:42 | 電離気体現象
先に気体の絶縁破壊が開始される際の臨界電子密度について報告しました. 今回,初期電子がその臨界電子密度まで電離増殖する時間遅れ,すなわちFormative Time Lag についてのコメントを下記サイトに置きましたので,よろしかったらご覧下さい.ご批判頂けたら幸いです.

The breakdown starts at the time when the electron density near the anode increases up to the critical density by ionization growth in the electron avalanche.
We discuss the effect of initial electrons on the formative time lag.
http://www.ne.jp/asahi/iupl/sunsan-tuee/


pdf file

Related topics are put on STPIGsite


Front-Sheath of Micro-Plasma Appeared at the Time of Just Starting Breakdown in Gases

2019-05-24 09:49:07 | 電離気体現象

以前,放電空間の電子密度が如何ほどになると破壊が開始されるのかを検討した結果をSTPIGのサイトに掲載しました(http://www.ne.jp/asahi/iupl/sunsan-tuee/ppt/Estimweb.pdf).その一部に正確さを欠く説明がありましたので,修正することにしました.
修正箇所は,マイクロプラズマの先端に形成されている空間電荷層の密度(平均イオン密度)の見積もりについてです.先の見積では,単純にポアッソンの式からイオンの平均密度を評価しました.これですとイオンの平均密度は電離エネルギーとマイクロプラズマの電子温度との比,eφi/Teに依存し一義的に決められません.
イオン密度はマイクロプラズマ側で臨界電子密度に等しく陰極側に指数関数的に減少することを考慮して評価すると,eφi/Teに関係なくイオンの平均密度を見積もれる上に,マイクロプラズマ中の電子温度の大凡を予測できます.
マイクロプラズマ前面のシース構造の新しい説明を下記サイトに置きました. ご覧下さい. コメント頂ければ幸いです.

We revised a part of the previous report entitled “An Estimation of Critical Electron Density at Just Starting Breakdown in Gases”(http://www.ne.jp/asahi/iupl/sunsan-tuee/ppt/Estimweb.pdf).
"Front-Sheath of Micro-Plasma Appeared at the Time of Just Starting Breakdown in Gases" was put on the STPIG site.
http://www.ne.jp/asahi/iupl/sunsan-tuee/


pdf file

Related topics are put on STPIGsite