超音波技術(多変量自己回帰モデルによるフィードバック解析) Ultrasonic-labo
超音波の音圧測定解析に基づいた、超音波伝搬現象の分類 Ultrasonic-labo
空中を伝搬する超音波の応用技術を開発 ultrasonic-labo
空中超音波のコントロールシステム ultrasonic-labo
超音波プローブを利用した超音波制御システム Ultrasonic-labo
超音波システム研究所は、
超音波伝搬状態の測定・解析により、
超音波振動が伝搬する現象に関する分類方法を開発しました。
この分類方法は、
超音波の伝搬状態に関する
主要となる周波数(パワースペクトル)の
ダイナミック特性(非線形現象の変化)により
線形・非線形の共振効果を推定します。
これまでのデータ解析から
効果的な利用方法を
以下のような
4つのタイプに分類することができました。
1:線形型
2:非線形型
3:ミックス型
4:変動型
さらに変動型は、以下のような
3つのタイプに分類することができました。
1:線形変動型
2:非線形変動型
3:ミックス変動型(ダイナミック変動型)
上記の各タイプに基づいた装置開発・制御設定・検査・・・
超音波技術の応用に関して成功事例が多数あります。
特に、
安定性・変化の状態・・・に関して
周波数成分による詳細な分類により、
目的と効果に対する、効率のよい
各種条件の設定・調整が可能になりました。
さらに、洗浄に関しては
汚れの特性やバラツキに関する情報が得られにくいため
このような分類をベースに実験確認することで
効果的な超音波制御が、実現します。
その他の応用事例
超音波洗浄機の評価、超音波振動子の評価、・・・
超音波加工・溶接・曲げ・・・振動現象の制御
超音波による化学反応促進・抑制(例 めっき)処理
表面を伝搬する超音波振動の特性による表面検査・表面処理
液体・気体・弾性体(粉末・・)に対する
超音波(攪拌・乳化・分散・粉砕・表面の均一化・・・・)処理
その他
この分類の本質的なアイデアは、
超音波の音圧データの解析結果(バイスペクトル)のデータ群を、
抽象代数学の「導来関手」に適応させるということです。
抽象的ですが、超音波の伝搬状態を計測解析するなかで
非線形現象(バイスペクトル)に関する、対応・制御事例から
時間経過とともに変化する状態を捉えるために
「導来関手」とスペクトルシーケンスの関係を
線形・非線形の共振効果に対応した
超音波の伝搬空間を、複体の変化と考え分類することにしました。
その結果、超音波システム研究所の「非線形制御技術」は、
この方法による、
具体的な技術(例 超音波制御システム)として実現しています。
応用技術の可能性として
非線形性の発生状態に関する研究開発を進めています。
「超音波利用の最も大きな効果が、非線形現象の伝搬状態の変化にある」
という考え方が一歩進んだと考えています。
超音波伝搬状態の測定・解析により、
超音波振動が伝搬する現象に関する分類方法を開発しました。
この分類方法は、
超音波の伝搬状態に関する
主要となる周波数(パワースペクトル)の
ダイナミック特性(非線形現象の変化)により
線形・非線形の共振効果を推定します。
これまでのデータ解析から
効果的な利用方法を
以下のような
4つのタイプに分類することができました。
1:線形型
2:非線形型
3:ミックス型
4:変動型
さらに変動型は、以下のような
3つのタイプに分類することができました。
1:線形変動型
2:非線形変動型
3:ミックス変動型(ダイナミック変動型)
上記の各タイプに基づいた装置開発・制御設定・検査・・・
超音波技術の応用に関して成功事例が多数あります。
特に、
安定性・変化の状態・・・に関して
周波数成分による詳細な分類により、
目的と効果に対する、効率のよい
各種条件の設定・調整が可能になりました。
さらに、洗浄に関しては
汚れの特性やバラツキに関する情報が得られにくいため
このような分類をベースに実験確認することで
効果的な超音波制御が、実現します。
その他の応用事例
超音波洗浄機の評価、超音波振動子の評価、・・・
超音波加工・溶接・曲げ・・・振動現象の制御
超音波による化学反応促進・抑制(例 めっき)処理
表面を伝搬する超音波振動の特性による表面検査・表面処理
液体・気体・弾性体(粉末・・)に対する
超音波(攪拌・乳化・分散・粉砕・表面の均一化・・・・)処理
その他
この分類の本質的なアイデアは、
超音波の音圧データの解析結果(バイスペクトル)のデータ群を、
抽象代数学の「導来関手」に適応させるということです。
抽象的ですが、超音波の伝搬状態を計測解析するなかで
非線形現象(バイスペクトル)に関する、対応・制御事例から
時間経過とともに変化する状態を捉えるために
「導来関手」とスペクトルシーケンスの関係を
線形・非線形の共振効果に対応した
超音波の伝搬空間を、複体の変化と考え分類することにしました。
その結果、超音波システム研究所の「非線形制御技術」は、
この方法による、
具体的な技術(例 超音波制御システム)として実現しています。
応用技術の可能性として
非線形性の発生状態に関する研究開発を進めています。
「超音波利用の最も大きな効果が、非線形現象の伝搬状態の変化にある」
という考え方が一歩進んだと考えています。
オリジナル超音波実験(超音波システム研究所) ultrasonic-labo