超音波システム研究所

超音波の新しい利用に関するブログです

超音波システム(音圧測定解析、発振制御)

2024-07-31 20:35:50 | 超音波システム研究所2011
超音波システム(音圧測定解析、発振制御)




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波専用水槽の設計・製造技術

2024-07-31 19:35:57 | 超音波システム研究所2011

超音波専用水槽の設計・製造技術を開発

━━━━━━━━━━━━━━━━━━━━━━━━━━━

超音波システム研究所は、

超音波の伝搬状態に関する計測・解析技術を応用して、

超音波専用水槽の設計・製造技術を開発しました。


超音波制御しやすい液循環 http://youtu.be/6ID4IrZ1hnA

今回開発した技術により

20cmから300cmの超音波専用水槽に対して、

超音波洗浄や表面改質・・・に適した

超音波の利用効率、キャビテーション、加速度変化、

対象物への伝搬状態・・・を簡単に制御出来るようになりました。

従来の水槽(あるいは振動子)設計や製造においては

音響特性に対する考慮が十分でないために、

超音波振動による「共振・干渉・減衰」による

不均一で不安定な超音波利用になる傾向があります。

その結果、特に、

超音波の寿命・水槽のトラブル・・・が起きます。

超音波システム研究所の設計技術は、

現状の水槽・振動子・・に対しても

問題点を検出し

改善・改良を行うことができます。

適切な設計・改善(治工具の追加や液循環・・・)による効果は

効率的な超音波の伝搬現現象により、

ステンレスや樹脂・・・の表面が改質効果を生みます。

超音波制御により、出力は、最適化され

小さい出力で高い音圧や幅広い超音波周波数の伝搬を実現します。


 マイクロバブルの利用 http://youtu.be/7WfIYKN8guI

■参考

 http://youtu.be/6dr81lZE6es

   http://youtu.be/eiTIVZOJfLI

   http://youtu.be/zhTFItIAphM

   http://youtu.be/BmYODYZb9uI

   http://youtu.be/Y75HXE6_Gi8

 
 

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

マイクロバブル・ナノバブルと超音波(To nanobubbles by ultrasound microbubbles)

2024-07-31 19:13:34 | 超音波システム研究所2011

マイクロバブル・ナノバブルと超音波(To nanobubbles by ultrasound microbubbles)




マイクロバブルを超音波照射でナノバブルにします
超音波の伝搬状態が大きく変わります

各種設定の組み合わせにより
 超音波の制御が簡単に行えるようになります

To nanobubbles by ultrasound microbubbles




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究に関する動画・写真

2024-07-31 18:53:32 | 超音波システム研究所2011

超音波システム研究に関する動画・写真

超音波システム研究所は、
オリジナル製品:超音波発振プローブ製造に関する、
音響特性の解析・評価技術を応用した、
メガヘルツの超音波発振制御技術を開発しました。

超音波を利用した
 洗浄、改質、検査、・・・への新しい応用技術です。

低周波の振動・音との組み合わせ制御による応用が可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 応用システム技術として開発しました。

ポイントは
 表面弾性波の利用方法です、
 対象物の条件・・・により
 超音波の伝搬特性を確認(注1)することで、
 オリジナル非線形共振現象(注2、3)として
 対処することが重要です

注1:超音波の伝搬特性
 非線形特性
 応答特性
 ゆらぎの特性
 相互作用による影響

注2:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

注3:過渡超音応力波
 変化する系における、ダイナミック加振と応答特性の確認
 時間経過による、減衰特性、相互作用の変化を確認
 上記に基づいた、過渡超音応力波の解析評価

様々な分野への利用が可能になると考えています

各種コンサルティングにおいて提案していきます。


メガヘルツの超音波発振制御プローブ(概略仕様)
 測定範囲 0.01Hz~100MHz
 発振範囲 0.1kHz~10MHz
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 (材質・サイズ・構造・・・音響特性に合わせた対応が可能です)



  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波プローブによる、スイープ発振システム

2024-07-31 18:35:48 | 超音波システム研究所2011
超音波システム研究所は、
オリジナル超音波プロ-ブの製造技術を応用・発展しています。
プローブの音響特性に基づいた、発振制御技術による
表面弾性波の非線形振動現象をコントロールする技術を開発し、
各種超音波の利用技術としてコンサルティング対応しています。



ポイントは、超音波伝搬部の最適化(注)です。

注:表面残留応力の緩和・均一化処理・・により
  安定した超音波発振制御が実現可能になります

発振制御条件の設定技術
1)装置・機器の振動モードに対応した、発振波形の設定
2)装置・機器の振動モードに対応した、スイープ条件の設定
3)装置・機器の振動モードに対応した、出力レベルのの設定

そのために、
オリジナルプローブの超音波伝搬特性の動作確認
(音圧レベル、周波数範囲、非線形性、・・ダイナミック特性)による、
超音波伝搬状態に関する特性評価が重要です。

特に、複雑に変化する超音波の振動現象について、
時系列の音圧データに基づいた応答特性の解析・評価が必要です。

接続状態と応答特性から、
音圧レベル・周波数・非線形性の利用範囲を調整します。

現状では、以下の範囲について対応可能となっています。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 1.0kHz~25MHz
 伝搬範囲 0.5kHz~700MHz以上
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

標準的な使用事例
2種類の非線形共振型超音波発振制御プローブによる、
スイープ発振、パルス発振の発振条件の設定により
高い音圧レベルの共振現象と、
高調波の発生現象(10次以上の非線形現象)による、
100MHz以上の高周波伝搬状態を、ダイナミック制御します。




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波洗浄器による、メガヘルツの超音波洗浄技術を開発ーー音響流のコントロール技術ーー(超音波システム研究所)

2024-07-31 18:24:47 | 超音波システム研究所2011
超音波洗浄器による、メガヘルツの超音波洗浄技術を開発ーー音響流のコントロール技術ーー(超音波システム研究所)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波のシステム技術no.6

2024-07-31 17:31:34 | 超音波システム研究所2011

超音波のシステム技術no.6





超音波のシステム技術

弾性波に関してのシミュレーションを
 応用したシステム技術です
<<超音波システム研究所>>


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波発振制御システム(60MHz 2ch 266MSa/s)

2024-07-31 17:03:35 | 超音波システム研究所2011
超音波発振制御システム(60MHz 2ch 266MSa/s)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波の非線形スイープ発振制御実験 Ultrasonic nonlinear sweep oscillation control experiment

2024-07-31 16:53:36 | 超音波システム研究所2011
超音波の非線形スイープ発振制御実験 Ultrasonic nonlinear sweep oscillation control experiment




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波の伝搬制御実験(超音波システム研究所)

2024-07-31 16:41:42 | 超音波システム研究所2011
超音波の伝搬制御実験(超音波システム研究所)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする