脱気と液循環に関する超音波解析資料を紹介します
一つの実験解析例です
注:水槽と超音波(42kHz)による影響が大きいので
条件が異なる場合は結果も変わってきます
複数の装置を解析すると
水槽による影響を含め
様々なパラメータが複雑に関連していることが
分かるようになります
オリジナル超音波実験 (超音波システム研究所 ultrasonic-labo)
超音波システム研究所(所在地:東京都八王子市)は、
小型ポンプを利用した液循環により
超音波(音響流)の伝搬状態をダイナミックに制御する
「流水式超音波(音響流)制御技術」を開発しました。
超音波テスターによる
流れと超音波の複雑な変化を、
水槽・液体(マイクロバブル)・超音波振動子・・・
の相互作用を含めた音圧解析により
利用目的に合わせて、
音響流の変化をコントロールするシステム技術です。
実用的には、
現状の液循環装置について
ON/OFF制御(あるいは流量・流速・・・の制御)を
装置の設置状態、対象物を含めた表面弾性波を考慮して
各種相互作用・振動モードを最適化する方法です。
特に、ポンプの特性を利用して、
液体と気体を交互に循環させる・・・により
新しい超音波・マイクロバブルの効果を実現しています。
ナノレベルの応用では、
「流水式超音波システム」として
20メガヘルツまでの周波数変化を含めた
「超音波シャワー」による
効率の高い超音波利用が実現しています。
-今回開発したシステムの応用実施事例-
オゾンと超音波の組み合わせ技術
低出力(50W以下)による5mサイズの水槽への超音波伝搬
ガラス・レンズ部品の精密洗浄(超音波シャワー技術)
複雑な形状・線材・真空部品・・・の表面改質(共振現象の制御技術)
溶剤・洗剤・・・・の化学反応(超音波と流れによる攪拌)
ナノレベルの粉末・塗料・触媒・・・攪拌・分散(表面弾性波の制御技術)
マイクロレベルの金属エッジ部のバリ取り
めっき・コーティング・表面処理・・・
・・・・・・・
上記の技術は、音圧(非線形現象)測定・解析に基づいて、
表面弾性波と流体の流れに関して
ダイナミック制御を実現させる
新しい超音波システムの開発方法です。
対象物の振動モードに合わせた、超音波制御技術 Ultrasonic system
超音波システム研究所は、
超音波のダイナミック特性を解析・評価する技術により
超音波シャワー、超音波液循環・・・実績に基づいた、
新しい「論理モデル」を開発しました。
超音波テスターを利用したこれまでの
計測・解析方法を、
複数の超音波プローブの測定データに発展させたことで、
超音波の非線形現象に対する、各種の影響・効果について
具体的な検討が、できるようになりました。
解析データと解析時間が、大きくなる欠点はありますが
超音波の非線形現象に関連した事項に関して、
非常に優れた検出効果があります。
超音波テスターを利用されている関係者のデータについて
相談・対応する中で
有効性を多数確認した結果(注)
新しい「論理モデル」として作成しました。
詳細は、コンサルティング対応します。
注:
非線形効果、加速度効果、定在波の効果
相互作用、応答特性、・・
特に、
新しい洗浄機の洗浄効果が小さい事例、
音圧レベルが高くても洗浄効果の小さい事例、
同じ材質で・同じ形状でも、洗浄効果が異なる事例、
朝から昼にかけての洗浄効果の変化の事例、
・・・・・
について納得のいく説明ができます。
<ポンプ利用(脱気と曝気)による超音波の非線形制御技術について>
高周波を利用して低周波が発生する
超音波洗浄における新しい方法のヒントとして
<衝撃波>を考えました。
ポンプ利用(脱気と曝気)による超音波現象を
非線形現象による<衝撃波>としてとらえると、
音場(洗浄物・音響流・放射体・気泡)の条件に
噴流や淀みによる
複雑な多数の周波数を同時に発生させないほうが
効果がある場合の
洗浄の実状を説明する
重要な制御事象(超音波シャワーの原理)になると考えています。
<応用に関するアイデア:概要>
気泡の近傍で形成されるミクロ流を
適切に自己組織化することで
安定した洗浄力のある
音響流が構成できると言うアイデアです。
(シャノンのジャグリング定理を応用した「超音波制御」方法
参照 http://ultrasonic-labo.com/?p=1753 )
ミクロ流の自己組織化について
脱気・曝気・超音波・水槽表面の弾性波動・・・により
音響流のコントロールが可能になりました。
(超音波キャビテーションの観察・制御技術
参照 http://ultrasonic-labo.com/?p=10013 )
具体的には
各種対象について
音響特性と相互作用の確認により
目的に合わせた、音響流の設定(周波数範囲と変化・・)条件に基づいて
詳細な確認調整を行います。
曝気による気泡の大きさは
超音波によるマイクロバブルの発生量とも関連するため
単純な傾向はありませんが
最も重要なパラメータです。
(音色と超音波 参照 http://ultrasonic-labo.com/?p=1082)
コンサルティング対応として
以下の技術を適切に設定することで
上記の技術を実現します。
1)ジャグリング定理を応用した「超音波制御」技術
2)音色と超音波・音と超音波の組み合わせ制御技術
3)「脱気・マイクロバブル発生装置」の利用技術
4)超音波洗浄機の<計測・解析・評価>技術
「脱気・マイクロバブル発生装置」を利用した超音波システム
http://ultrasonic-labo.com/?p=1996
音と超音波の組み合わせによる、超音波システム
http://ultrasonic-labo.com/?p=7706
脱気マイクロバブル発生液循環システム追加の出張サービス
http://ultrasonic-labo.com/?p=2906
超音波洗浄機の<計測・解析・評価>(出張)サービス
http://ultrasonic-labo.com/?p=1934
超音波測定解析の推奨システム
http://ultrasonic-labo.com/?p=1972
参考動画
https://youtu.be/Apu7q_xSQq0
https://youtu.be/WzInDAZ8mkg
https://youtu.be/JAgMFxDeqS8
https://youtu.be/Su_QOsE-BHA
https://youtu.be/f6DZrudNonE
https://youtu.be/dJOutzFdYDI
https://youtu.be/j1zBHSd4AL4
https://youtu.be/yx7VKQ3JUrs
***
https://youtu.be/LhOYlPa-4xE
https://youtu.be/UI_dh_nImts
https://youtu.be/kkgN0rNo75Q
https://youtu.be/kO850ImJFOg
***
https://youtu.be/cz_bxDMv9Fs
https://youtu.be/WATS6kp22MQ
https://youtu.be/n-QztJuZSLQ
https://youtu.be/tXAOsxJ7oqs
https://youtu.be/4yqqvxCUw30
https://youtu.be/QkZgwNM7bHA
https://youtu.be/N06dQKBYnnc
https://youtu.be/Qvzgp2d8Le4
<脱気・マイクロバブル発生液循環システム>
https://youtu.be/cNl6lkWo-sk
https://youtu.be/mYUE1FxeO4o
https://youtu.be/j9MTB3tlZgA
https://youtu.be/aCIXNAp9E8k
超音波の洗浄・攪拌・加工に関する「論理モデル」
http://ultrasonic-labo.com/?p=3963
代数モデル
http://ultrasonic-labo.com/?p=1311
数学的理論
http://ultrasonic-labo.com/?p=1350
音色と超音波
http://ultrasonic-labo.com/?p=1082
物の動きを読む
http://ultrasonic-labo.com/?p=1074
音圧測定装置(超音波テスター)の標準タイプ
http://ultrasonic-labo.com/?p=1722
音圧測定装置(超音波テスター)の特別タイプ
http://ultrasonic-labo.com/?p=1736
超音波計測の特別システムをオーダーメイド対応
http://ultrasonic-labo.com/?p=1972
超音波<計測・解析>事例
http://ultrasonic-labo.com/?p=1705
複数の超音波プローブを利用した「測定・解析・評価」
http://ultrasonic-labo.com/?p=3755
超音波の測定に関して
サンプリング時間・・・の設定は
オリジナルのシミュレーション技術を利用して決定しています
上記の技術について
「超音波コンサルティング」対応します
詳細に興味のある方は
超音波システム研究所にメールでお問い合わせください。
脱気と曝気の組み合わせに関しては、沢山のノウハウがあります。
「ナノテクノロジー」の研究・開発<超音波攪拌・乳化・分散・粉砕>
超音波システム研究所は、
*複数の異なる周波数の振動子の「同時照射」技術
*間接容器の利用に関する「表面弾性波」の利用技術
*振動子の固定方法による「定在波の制御」技術
*時系列データのフィードバック解析による「超音波測定・解析」技術
*液循環に関する「ダイナミックシステム」の統計処理技術
*超音波の「非線形現象に関する」制御技術
*超音波とマイクロバブルによる「表面改質技術」
*超音波の「音圧測定・解析技術」
*磁性・磁気と超音波の組み合わせ技術
*超音波による「金属部品のエッジ処理」技術
*メガヘルツの超音波発振制御技術
*治工具による振動制御技術
*音と超音波の組み合わせ技術
*超音波発振プローブの製造技術
上記の技術を組み合わせることで
対象物に合わせた、超音波の非線形制御技術を開発しました。
今回開発した技術の具体的な応用事例として、
カーボンナノチューブ、銀粉、鉄粉、銅粉、アルミニウム粉、
ガラス、樹脂、セラミック、ポリマー、・・・
に対して、超音波特有の効果(表面刺激)を実現しました。
詳細な特性につきましてはメールでお問い合わせください。
特に、
超音波の発振周波数に対する、
対象物への伝搬状態(キャビテーションと音響流の効果)を
明確に制御(最適化)することで、安定した表面処理を実現します。
非常に単純な事項が多いのですが
具体的な対象や目的により様々な設定があります。
詳細は、ノウハウとしてコンサルティング対応しています。
複数の超音波振動子を利用する場合は
発振の順序、出力設定、水槽内の液面の振動・・に関する
各種(時間の経過による特性の変化・・)の問題に、
<相互作用の影響>をグラフとして、把握することが重要です。
超音波・洗浄・改質・攪拌・・・様々な応用・研究・・につながっています。
音響特性を利用した「超音波加工技術」 ultrasonic-labo
超音波システム研究所 Ultrasonic Cavitation Control