超音波の送受信テスト(音圧データの測定解析)
超音波発振制御プローブの製造技術(超音波伝搬特性テスト)
超音波システム研究所は、
対象物の表面を伝搬する超音波データの解析実績から
メガヘルツの超音波発振による、新しい表面検査技術を開発しました。
超音波プローブの発振制御による
「音圧・振動」測定・解析技術を応用した方法です。
目的(対象物の表面を伝搬する振動モード)に合わせた
超音波プローブの開発対応による、
コンサルティング・評価技術の説明対応を行っています。
新しい超音波発振制御技術の応用です。
対象物の音響特性に合わせた、
メガヘルツの超音波伝搬状態に関する非線形現象を利用することで
対象物の表面状態に関する新しい特徴を検出することが可能です。
特に、発振・受信の組み合わせによる
応答特性を利用した
基板部品の表面検査や、精密洗浄部品の事前評価・・・に関して、
超音波振動の新しい評価パラメータとなる基本技術です。
表面弾性波の伝搬現象に関する、超音波のダイナミック特性を
測定・解析・評価に基づいて
論理モデルを構成・修正しながら検討することで
目的(評価)に合わせた効果的な利用を可能にしました。
超音波の送受信について
対象物を伝搬する特性を検出するために
対象物の振動特性に対応した、
以下の組み合わせを標準として測定・解析・評価します
<標準測定>
送信 :超音波プローブ 発振型(共振・非線形タイプ)
受信1:超音波プローブ 測定型(共振タイプ)
受信2:超音波プローブ 測定型(非線形タイプ)
参考:超音波プローブのタイプ
1)超音波プローブ 発振型(共振タイプ)
2)超音波プローブ 発振型(非線形タイプ)
3)超音波プローブ 測定型(共振タイプ)
4)超音波プローブ 測定型(非線形タイプ)
5)超音波プローブ 発振型(共振・非線形タイプ)
超音波プローブの概略仕様
発振・測定範囲 0.01Hz~100MHz
コード長さ 10cm~
対象材質 ステンレス、樹脂、セラミック、ガラス・・・
検査装置・対象物・治具・・の音響特性を、
評価パラメータに合せて発振制御することで、
効果的な送受信データから表面状態を検出します。
この技術は、超音波洗浄に関して
洗浄バラツキを発生する原因を明確にします。
従って、超音波制御による
表面処理・洗浄・攪拌・加工・・対応・対策を可能にします。
対象物の表面を伝搬する超音波データの解析実績から
メガヘルツの超音波発振による、新しい表面検査技術を開発しました。
超音波プローブの発振制御による
「音圧・振動」測定・解析技術を応用した方法です。
目的(対象物の表面を伝搬する振動モード)に合わせた
超音波プローブの開発対応による、
コンサルティング・評価技術の説明対応を行っています。
新しい超音波発振制御技術の応用です。
対象物の音響特性に合わせた、
メガヘルツの超音波伝搬状態に関する非線形現象を利用することで
対象物の表面状態に関する新しい特徴を検出することが可能です。
特に、発振・受信の組み合わせによる
応答特性を利用した
基板部品の表面検査や、精密洗浄部品の事前評価・・・に関して、
超音波振動の新しい評価パラメータとなる基本技術です。
表面弾性波の伝搬現象に関する、超音波のダイナミック特性を
測定・解析・評価に基づいて
論理モデルを構成・修正しながら検討することで
目的(評価)に合わせた効果的な利用を可能にしました。
超音波の送受信について
対象物を伝搬する特性を検出するために
対象物の振動特性に対応した、
以下の組み合わせを標準として測定・解析・評価します
<標準測定>
送信 :超音波プローブ 発振型(共振・非線形タイプ)
受信1:超音波プローブ 測定型(共振タイプ)
受信2:超音波プローブ 測定型(非線形タイプ)
参考:超音波プローブのタイプ
1)超音波プローブ 発振型(共振タイプ)
2)超音波プローブ 発振型(非線形タイプ)
3)超音波プローブ 測定型(共振タイプ)
4)超音波プローブ 測定型(非線形タイプ)
5)超音波プローブ 発振型(共振・非線形タイプ)
超音波プローブの概略仕様
発振・測定範囲 0.01Hz~100MHz
コード長さ 10cm~
対象材質 ステンレス、樹脂、セラミック、ガラス・・・
検査装置・対象物・治具・・の音響特性を、
評価パラメータに合せて発振制御することで、
効果的な送受信データから表面状態を検出します。
この技術は、超音波洗浄に関して
洗浄バラツキを発生する原因を明確にします。
従って、超音波制御による
表面処理・洗浄・攪拌・加工・・対応・対策を可能にします。
超音波洗浄器を利用した、超音波伝搬制御実験(超音波システム研究所)
超音波システム研究所は、
超音波制御により表面弾性波を利用した、
応用技術を開発しています。
超音波(発振制御)と表面弾性波の組み合わせにより
ダイナミックな超音波伝搬制御を実現します。
ポイントは
表面弾性波による非線形現象を
効率の高い状態で制御可能にする
発振条件の設定(波形・出力・周波数・変化・・・)です。
上記の具体的な技術として
水槽・治工具・・・と超音波の相互作用による
非線形現象(バイスペクトル)を
目的(洗浄、攪拌、加工、溶接、表面処理、応力緩和処理、検査・・)
に合わせて制御する、システム技術を開発しました。
超音波の伝搬状態の測定・解析技術を利用した結果、
1)50次以上の高調波の制御を実現していること
2)20kHz以下の共振現象と非線形現象を最適化できること
3)複数の超音波発振に応用すること・・・を確認しています。
システムの音響特性を
(測定・解析・評価)確認して
発振制御条件を調整設定することがノウハウです
超音波制御により表面弾性波を利用した、
応用技術を開発しています。
超音波(発振制御)と表面弾性波の組み合わせにより
ダイナミックな超音波伝搬制御を実現します。
ポイントは
表面弾性波による非線形現象を
効率の高い状態で制御可能にする
発振条件の設定(波形・出力・周波数・変化・・・)です。
上記の具体的な技術として
水槽・治工具・・・と超音波の相互作用による
非線形現象(バイスペクトル)を
目的(洗浄、攪拌、加工、溶接、表面処理、応力緩和処理、検査・・)
に合わせて制御する、システム技術を開発しました。
超音波の伝搬状態の測定・解析技術を利用した結果、
1)50次以上の高調波の制御を実現していること
2)20kHz以下の共振現象と非線形現象を最適化できること
3)複数の超音波発振に応用すること・・・を確認しています。
システムの音響特性を
(測定・解析・評価)確認して
発振制御条件を調整設定することがノウハウです
超音波システム研究所(圧電素子) Ultrasonic experiment
超音波による攪拌・分散・乳化・破砕・・ ultrasonic-system
Ultrasonic stir technology (超音波攪拌技術)
超音波による金属・樹脂表面の表面改質技術 Surface modification technology by ultrasonic
超音波の非線形現象 The nonlinear phenomenon of an ultrasonic wave
脱気マイクロバブル発生液循環システム ultrasonic-labo