オリジナル超音波実験(メガヘルツの超音波発振制御プローブ) ultrasonic-labo
ガラス
金属(ステンレス)
「流水式超音波制御技術」 Ultrasonic experiment
メガヘルツの超音波発振制御プローブ ultrasonic-labo
超音波専用水槽(間接水槽・間接容器)
--超音波の非線形現象を制御する技術--
超音波システム研究所は、
間接容器を利用した
「超音波の非線形現象(音響流)を制御する技術」を開発しました。
この技術は
表面検査による間接容器、超音波水槽、その他事項具・・の
超音波伝搬特性(解析結果)を利用(評価)して
超音波(キャビテーション・音響流)を制御します。
さらに、
具体的な対象物の構造・材質・音響特性に合わせ、
効果的な超音波(キャビテーション・音響流)伝搬状態を、
ガラス容器・超音波・対象物・・の相互作用に合わせて、
超音波の発振制御により実現します。
特に、
音響流制御による、高調波のダイナミック特性により
ナノレベルの対応が実現しています
金属粉末をナノサイズに分散する事例から応用発展させました。
超音波に対する
定在波やキャビテーションの制御技術をはじめ
間接容器に対する伝播制御技術・・・により
適切なキャビテーションと音響流をコントロールします。
これまでは、各種溶剤の効果と超音波の効果が
トレードオフの関係にあることが多かったのですが
この技術により
溶剤と超音波の効果を
適切な相互作用により
効率良く利用(超音波制御)可能になりました。
オリジナルの超音波伝搬状態の測定・解析技術により、
音響流の評価・・・・多数のノウハウ・・・を確認しています。
超音波システム研究所は、
間接容器を利用した
「超音波の非線形現象(音響流)を制御する技術」を開発しました。
この技術は
表面検査による間接容器、超音波水槽、その他事項具・・の
超音波伝搬特性(解析結果)を利用(評価)して
超音波(キャビテーション・音響流)を制御します。
さらに、
具体的な対象物の構造・材質・音響特性に合わせ、
効果的な超音波(キャビテーション・音響流)伝搬状態を、
ガラス容器・超音波・対象物・・の相互作用に合わせて、
超音波の発振制御により実現します。
特に、
音響流制御による、高調波のダイナミック特性により
ナノレベルの対応が実現しています
金属粉末をナノサイズに分散する事例から応用発展させました。
超音波に対する
定在波やキャビテーションの制御技術をはじめ
間接容器に対する伝播制御技術・・・により
適切なキャビテーションと音響流をコントロールします。
これまでは、各種溶剤の効果と超音波の効果が
トレードオフの関係にあることが多かったのですが
この技術により
溶剤と超音波の効果を
適切な相互作用により
効率良く利用(超音波制御)可能になりました。
オリジナルの超音波伝搬状態の測定・解析技術により、
音響流の評価・・・・多数のノウハウ・・・を確認しています。
音と超音波の組み合わせを利用した超音波制御技術 ultrasonic-labo
新しい超音波制御技術(超音波発振制御制御プローブ) ultrasonic-labo