オリジナル超音波実験 ultrasonic-labo
オリジナル超音波実験(音圧測定解析) ultrasonic-labo
超音波とファインバブル(マイクロバブル)による洗浄技術 ultrasonic-labo
対処方法(超音波洗浄を例として)
1)超音波装置をシステムとして捉える
2)超音波装置の音圧測定(振動計測)を行う
3)音圧データの解析により
振動の伝搬特性から問題点を検出する
3-0)安定性
洗浄システムの安定性の確認
(時間経過とともに、どの程度
超音波の音圧変化・周波数変化・洗浄液の変化・・・・
があるのかということを確認して、許容範囲を推定する)
3-1)水槽の問題
構造、強度、設置方法、固定方法、・・・
3-2)洗浄液
各種(溶存酸素濃度、液温、pH、・・)の分布
3-3)液循環
ポンプ、マイクロバブル、液面振動、オーバーフロー、・・
3-4)超音波
出力、周波数、制御、キャビテーション、音響流、・・
4)洗浄実験確認
洗浄効果のある超音波状態(音圧レベル、主要周波数、変化)を確認する
5)3)4)の結果を整理して
改善方法をまとめる
具体例
*水槽の問題
オーバーフロー構造の修正・追加
設置方法の変更
設置場所(床面)の修正
水槽の表面処理(超音波とマイクロバブルによる応力緩和処理)
*洗浄液
マイクロバブル発生液循環システムの追加
液循環の設定条件により
キャビテーションと音響流を最適化する
*超音波
複数の異なる周波数の超音波を制御して使用する
振動子の設置方法を変更
液循環と超音波振動子のONOFF制御により
キャビテーションと音響流を最適化する
*洗浄
洗浄条件(洗浄物、汚れ、・・・)における変動範囲の確認
洗浄目的(洗浄レベル、不良率、・・)の確認
洗浄評価方法の確認
1)超音波装置をシステムとして捉える
2)超音波装置の音圧測定(振動計測)を行う
3)音圧データの解析により
振動の伝搬特性から問題点を検出する
3-0)安定性
洗浄システムの安定性の確認
(時間経過とともに、どの程度
超音波の音圧変化・周波数変化・洗浄液の変化・・・・
があるのかということを確認して、許容範囲を推定する)
3-1)水槽の問題
構造、強度、設置方法、固定方法、・・・
3-2)洗浄液
各種(溶存酸素濃度、液温、pH、・・)の分布
3-3)液循環
ポンプ、マイクロバブル、液面振動、オーバーフロー、・・
3-4)超音波
出力、周波数、制御、キャビテーション、音響流、・・
4)洗浄実験確認
洗浄効果のある超音波状態(音圧レベル、主要周波数、変化)を確認する
5)3)4)の結果を整理して
改善方法をまとめる
具体例
*水槽の問題
オーバーフロー構造の修正・追加
設置方法の変更
設置場所(床面)の修正
水槽の表面処理(超音波とマイクロバブルによる応力緩和処理)
*洗浄液
マイクロバブル発生液循環システムの追加
液循環の設定条件により
キャビテーションと音響流を最適化する
*超音波
複数の異なる周波数の超音波を制御して使用する
振動子の設置方法を変更
液循環と超音波振動子のONOFF制御により
キャビテーションと音響流を最適化する
*洗浄
洗浄条件(洗浄物、汚れ、・・・)における変動範囲の確認
洗浄目的(洗浄レベル、不良率、・・)の確認
洗浄評価方法の確認
超音波とファインバブル(マイクロバブル)による洗浄技術 ultrasonic-labo
超音波の最適化技術に関する情報
1:精密洗浄、ナノレベルの攪拌・・・において
低出力のメガヘルツ超音波刺激が効果的である
市販の安価なメガヘルツの超音波との組み合わせが有効です
2:周波数50kHz以下で、出力600W以上の超音波使用の場合
対象物の音響特性、あるいは水槽の音響特性・・により、
対象物の表面に対して、
低周波の振動刺激(20kHz以下の振動が主成分になる)が、
洗浄効果に発展できていない事例が多数ある
水槽の強度や音響特性に合わせた
超音波振動子(出力、周波数)の選定が重要
3:洗浄物と超音波(出力・周波数)と洗浄液(液循環・・)に関する
最適化のためには、超音波振動現象に関する音圧測定が必要
音圧測定に基づいて
洗浄効果につながる非線形現象を、音圧データの解析結果として、
洗浄効果の主要パラメータが把握できる
(洗浄効果の小さい超音波洗浄機の事例
低周波の共振現象による騒音や液面の振動現象になっている)
洗浄効果は、音圧レベルよりも
周波数変化を含んだダイナミックな音圧変化を確認することが重要
4:周波数50kHz以下で、出力600W程度の超音波使用の場合
メガヘルツ超音波との組み合わせによる
相互作用をコントロールすることで
脱脂洗浄で発生する油分の分解作用が発生
(キャビテーションと音響流の相互作用による
ラジカル反応による効果
油分の分解、洗浄液の流動性の改善、乳化作用、分離作用)
5:現状の超音波振動子の多くが、発振面に対する取り組みが少ない
単純な発振面は、一定の出力レベルが必要となるため、
超音波伝搬効率が悪い
(振動面の形状が悪いと、さらに超音波の伝搬効率は低下する
発振周波数・出力に合わせた設計が必要)
6:対象物を伝搬する超音波の刺激は、
対象物の音響特性により大きく変わる
主要パラメータ
(構造と強度バランス)
6-1)音圧レベルと振動モードの関係
6-2)超音波の送受信による応答特性
6-3)振動モードの時間特性(時間経過に伴う振動モードの変化)
6-4)対象物の固有振動モード(あるいは固有振動数)
7:対象物の音響特性確認により
対象物の材質による、超音波伝搬特性の利用が可能になる
7-1)間接容器・治工具・・の各種材質との組み合わせ
7-2)音圧レベルと伝搬周波数の最適化(ダイナミック制御)
7-3)媒体(洗浄液・・)の流れによる相互作用の調整
(ナノバブル・ウルトラファインバブルの利用)
1:精密洗浄、ナノレベルの攪拌・・・において
低出力のメガヘルツ超音波刺激が効果的である
市販の安価なメガヘルツの超音波との組み合わせが有効です
2:周波数50kHz以下で、出力600W以上の超音波使用の場合
対象物の音響特性、あるいは水槽の音響特性・・により、
対象物の表面に対して、
低周波の振動刺激(20kHz以下の振動が主成分になる)が、
洗浄効果に発展できていない事例が多数ある
水槽の強度や音響特性に合わせた
超音波振動子(出力、周波数)の選定が重要
3:洗浄物と超音波(出力・周波数)と洗浄液(液循環・・)に関する
最適化のためには、超音波振動現象に関する音圧測定が必要
音圧測定に基づいて
洗浄効果につながる非線形現象を、音圧データの解析結果として、
洗浄効果の主要パラメータが把握できる
(洗浄効果の小さい超音波洗浄機の事例
低周波の共振現象による騒音や液面の振動現象になっている)
洗浄効果は、音圧レベルよりも
周波数変化を含んだダイナミックな音圧変化を確認することが重要
4:周波数50kHz以下で、出力600W程度の超音波使用の場合
メガヘルツ超音波との組み合わせによる
相互作用をコントロールすることで
脱脂洗浄で発生する油分の分解作用が発生
(キャビテーションと音響流の相互作用による
ラジカル反応による効果
油分の分解、洗浄液の流動性の改善、乳化作用、分離作用)
5:現状の超音波振動子の多くが、発振面に対する取り組みが少ない
単純な発振面は、一定の出力レベルが必要となるため、
超音波伝搬効率が悪い
(振動面の形状が悪いと、さらに超音波の伝搬効率は低下する
発振周波数・出力に合わせた設計が必要)
6:対象物を伝搬する超音波の刺激は、
対象物の音響特性により大きく変わる
主要パラメータ
(構造と強度バランス)
6-1)音圧レベルと振動モードの関係
6-2)超音波の送受信による応答特性
6-3)振動モードの時間特性(時間経過に伴う振動モードの変化)
6-4)対象物の固有振動モード(あるいは固有振動数)
7:対象物の音響特性確認により
対象物の材質による、超音波伝搬特性の利用が可能になる
7-1)間接容器・治工具・・の各種材質との組み合わせ
7-2)音圧レベルと伝搬周波数の最適化(ダイナミック制御)
7-3)媒体(洗浄液・・)の流れによる相互作用の調整
(ナノバブル・ウルトラファインバブルの利用)