超音波プローブを利用した、オリジナル超音波実験 ultrasonic-labo
Ultrasonic irradiation 超音波照射実験 no.73
超音波システム<脱気・マイクロバブル発生液循環 Ultrasonic technology>
ファインバブル(マイクロバブル)を利用した超音波洗浄機(ultrasonic-labo)
超音波システム研究所は、
超音波の伝搬状態に関する計測・解析技術を応用して、
超音波専用水槽の設計・製造技術を開発しました。
今回開発した技術により
水槽の最大長さ:3cm(液量5cc)~
600cm(液量8000リットル)の
超音波専用水槽に対して、
超音波洗浄や表面改質・・・に適した
超音波の利用効率、キャビテーションと音響流のダイナミック制御、
対象物への伝搬状態・・・を利用目的に合わせて実現出来ます。
従来の水槽(あるいは振動子)設計や製造においては
音響特性に対する考慮が十分でないために、
振動の干渉・減衰による不均一・不安定な事象により
超音波の寿命・水槽のトラブル・・・が起きやすい傾向があります。
この技術は、
現状の水槽・振動子・・に対しても
問題点(洗浄液の各種分布、水槽・振動子の設置方法)を検出し
改善・改良を行うことができます。
適切な設計による効果は
超音波洗浄の主要因である、音響流(非線形現象)を、
音圧測定解析に基づいて、理解・評価する事で、
洗浄対象物の超音波による表面刺激が最適化され
小さい出力で高い音圧や幅広い超音波の周波数伝搬を実現します。
超音波の伝搬状態に関する計測・解析技術を応用して、
超音波専用水槽の設計・製造技術を開発しました。
今回開発した技術により
水槽の最大長さ:3cm(液量5cc)~
600cm(液量8000リットル)の
超音波専用水槽に対して、
超音波洗浄や表面改質・・・に適した
超音波の利用効率、キャビテーションと音響流のダイナミック制御、
対象物への伝搬状態・・・を利用目的に合わせて実現出来ます。
従来の水槽(あるいは振動子)設計や製造においては
音響特性に対する考慮が十分でないために、
振動の干渉・減衰による不均一・不安定な事象により
超音波の寿命・水槽のトラブル・・・が起きやすい傾向があります。
この技術は、
現状の水槽・振動子・・に対しても
問題点(洗浄液の各種分布、水槽・振動子の設置方法)を検出し
改善・改良を行うことができます。
適切な設計による効果は
超音波洗浄の主要因である、音響流(非線形現象)を、
音圧測定解析に基づいて、理解・評価する事で、
洗浄対象物の超音波による表面刺激が最適化され
小さい出力で高い音圧や幅広い超音波の周波数伝搬を実現します。