ファインバブルを利用した、オリジナル実験(超音波システム研究所)
超音波振動子のファンクションジェネレーター発振(超音波システム研究所)
小型ポンプによる、音響流制御を利用した、流水式超音波制御実験(超音波システム研究所)
超音波システム研究所は、
小型ポンプを利用した液循環により
超音波(音響流)の伝搬状態をダイナミックに制御する
「流水式超音波(音響流)制御技術」を開発しました。
超音波テスターによる
流れと超音波の複雑な変化を、
水槽・液体(マイクロバブル)・超音波振動子・・・
の相互作用を含めた音圧解析により
利用目的に合わせて、
音響流の変化をコントロールするシステム技術です。
実用的には、
現状の液循環装置について
ON/OFF制御(あるいは流量・流速・・・の制御)を
装置の設置状態、対象物を含めた表面弾性波を考慮して
各種相互作用・振動モードを最適化する方法です。
特に、ポンプの特性を利用して、
液体と気体を交互に循環させる・・・により
新しい超音波・マイクロバブルの効果を実現しています。
ナノレベルの応用では、
「流水式超音波システム」として
100メガヘルツまでの周波数変化を含めた
「超音波シャワー」による
効率の高い超音波利用が実現しています。
-システムの応用実施事例-
オゾンと超音波の組み合わせ技術
低出力(50W以下)による5mサイズの水槽への超音波伝搬
ガラス・レンズ部品の精密洗浄(超音波シャワー技術)
複雑な形状・線材・真空部品・・・の表面改質(共振現象の制御技術)
溶剤・洗剤・・・・の化学反応(超音波と流れによる攪拌)
ナノレベルの粉末・塗料・触媒・・・攪拌・分散(表面弾性波の制御技術)
マイクロレベルの金属エッジ部のバリ取り
めっき・コーティング・表面処理・・・
・・・・・・・
上記の技術は、音圧(非線形現象)測定・解析に基づいて、
表面弾性波と流体の流れに関して
ダイナミック制御を実現させる
新しい超音波システムの開発方法です。
小型ポンプを利用した液循環により
超音波(音響流)の伝搬状態をダイナミックに制御する
「流水式超音波(音響流)制御技術」を開発しました。
超音波テスターによる
流れと超音波の複雑な変化を、
水槽・液体(マイクロバブル)・超音波振動子・・・
の相互作用を含めた音圧解析により
利用目的に合わせて、
音響流の変化をコントロールするシステム技術です。
実用的には、
現状の液循環装置について
ON/OFF制御(あるいは流量・流速・・・の制御)を
装置の設置状態、対象物を含めた表面弾性波を考慮して
各種相互作用・振動モードを最適化する方法です。
特に、ポンプの特性を利用して、
液体と気体を交互に循環させる・・・により
新しい超音波・マイクロバブルの効果を実現しています。
ナノレベルの応用では、
「流水式超音波システム」として
100メガヘルツまでの周波数変化を含めた
「超音波シャワー」による
効率の高い超音波利用が実現しています。
-システムの応用実施事例-
オゾンと超音波の組み合わせ技術
低出力(50W以下)による5mサイズの水槽への超音波伝搬
ガラス・レンズ部品の精密洗浄(超音波シャワー技術)
複雑な形状・線材・真空部品・・・の表面改質(共振現象の制御技術)
溶剤・洗剤・・・・の化学反応(超音波と流れによる攪拌)
ナノレベルの粉末・塗料・触媒・・・攪拌・分散(表面弾性波の制御技術)
マイクロレベルの金属エッジ部のバリ取り
めっき・コーティング・表面処理・・・
・・・・・・・
上記の技術は、音圧(非線形現象)測定・解析に基づいて、
表面弾性波と流体の流れに関して
ダイナミック制御を実現させる
新しい超音波システムの開発方法です。
音圧測定解析に基づいた、超音波システムの開発技術 ultrasonic-labo
超音波の研究 NO.4
デジタルカメラによる
キャビテーションの写真を利用した超音波制御技術
http://ultrasonic-labo.com/?p=1461
超音波を利用した、「ナノテクノロジー」の研究・開発装置
http://ultrasonic-labo.com/?p=2195
超音波システム研究所のコンサルティング
http://ultrasonic-labo.com/?p=2187
超音波による表面弾性波の制御技術
http://ultrasonic-labo.com/?p=5609
超音波プローブの表面弾性波を利用した、超音波制御技術--超音波伝搬特性を測定・解析・評価する技術--(超音波システム研究所)
超音波実験(音圧測定解析に基づいた発振制御技術) Ultrasonic-labo
超音波システム研究所は、
超音波加湿器(1.7MHz 15W)を利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案実施しています。
メガヘルツ超音波発振器(タイマー付き)
http://ultrasonic-labo.com/wp-content/uploads/0ecfd6da6a0d4178bc43706aae8f4c3e.pdf
超音波加湿器(1.7MHz 15W)を利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案実施しています。
メガヘルツ超音波発振器(タイマー付き)
http://ultrasonic-labo.com/wp-content/uploads/0ecfd6da6a0d4178bc43706aae8f4c3e.pdf
超音波プローブの伝搬特性(非線形特性、応答特性、相互作用)--ダイナミック特性を評価する技術--(超音波システム研究所)