超音波の音圧測定解析データ(スライドショー)
超音波の音圧測定解析データ
超音波システム研究所は、
多変量自己回帰モデルによるフィードバック解析技術を応用した、
「超音波の伝搬状態を測定・解析・評価する技術」を利用して
超音波利用に関するコンサルティング対応を行っています。
超音波テスターを利用したこれまでの
計測・解析・結果(注)を時系列に整理することで
目的に適した超音波の状態を示す
新しい評価基準(パラメータ)を設定・確認します。
注:
非線形特性(音響流のダイナミック特性)
応答特性
ゆらぎの特性
相互作用による影響
統計数理の考え方を参考に
対象物の音響特性・表面弾性波を考慮した
オリジナル測定・解析手法を開発することで
振動現象に関する、詳細な各種効果の関係性について
新しい理解を深めています。
その結果、
超音波の伝搬状態と対象物の表面について
新しい非線形パラメータが大変有効である事例による
実績が増えています。
特に、洗浄・加工・表面処理効果に関する評価事例・・
良好な確認に基づいた、制御・改善・・・が実現します。
<統計的な考え方について>
統計数理には、抽象的な性格と具体的な性格の二面があり、
具体的なものとの接触を通じて
抽象的な考えあるいは方法が発展させられていく、
これが統計数理の特質である
<<超音波の音圧測定・解析>>
1)多変量自己回帰モデルによる
フィードバック解析により
超音波伝搬状態の安定性・変化について解析評価します
2)インパルス応答特性・自己相関の解析により
対象物の表面状態・・に関する解析評価を行います
3)パワー寄与率の解析により
超音波(周波数・出力)、形状、材質、測定条件・・
データの最適化に関する解析評価を行います
4)その他(表面弾性波の伝搬)の
非線形(バイスペクトル)解析により
対象物の振動モードに関する
ダイナミック特性の解析評価を行います
この解析方法は、
複雑な超音波振動のダイナミック特性を
時系列データの解析手法により、
超音波の測定データに適応させることで実現しています。
メガヘルツの超音波発振制御プローブの開発製造技術を応用して、
「非線形振動現象をコントロールする超音波制御技術」を開発しました。
超音波伝搬状態の測定・解析・評価技術に基づいた、
オリジナル非線形共振現象(注1)の制御技術です。
精密洗浄・加工・攪拌・検査・表面処理・・・への新しい応用技術です。
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
各種材料の音響特性(表面弾性波)を効率よく利用するため、
表面の残留応力分布の緩和処理が簡単に実現できます。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として
オリジナル発振制御方法(注2)を応用発展しました。
注2:オリジナル発振制御方法
2種類の超音波発振を行います
一つは、スイープ発振制御を行います
もう一つは、パルス発振制御を行います
詳細な設定は、目的・対象物・治工具・・
システムとしての振動系から論理モデルに基づいて設定します
(動作確認により微調整を行い、使用経過の中で
より良い状態に発展させていきます
詳細な制御設定は、使用者によるノウハウとなります)
ポイントは
超音波素子表面の表面弾性波利用技術です、
対象物の条件・・・により
超音波の伝搬特性を確認(注3)することで、
オリジナル非線形共振現象として
過渡超音応力波(注4)に対処することが重要です
注3:超音波の伝搬特性
非線形特性
応答特性
ゆらぎの特性
相互作用による影響
注4:過渡超音応力波
変化する系における、ダイナミック加振と応答特性の確認
時間経過による、減衰特性、相互作用の変化を確認
上記に基づいた、過渡超音応力波の解析評価
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案しています。
コンサルティング内容
1)超音波の非線形現象をコントロールする技術の説明
2)超音波の非線形現象をコントロールする方法の説明
3)超音波の非線形現象をコントロールする技術の応用方法の説明
4)その他(具体的な超音波装置への適用)
5)デモンストレーションによる説明
・・・・・
詳細に興味のある方は
超音波システム研究所にメールでお問い合わせください。
<<キャビテーションのコントロール>>
超音波システム研究所は、
目的に合わせた効果的な超音波のダイナミック制御を実現する、
<脱気・マイクロバブル発生液循環システム>に関して
メガヘルツの超音波発振制御とのくみあわせにより
超音波の非線形現象をコントロールする技術を開発しました。
<音響流とキャビテーションのバランスを最適化する>
1)洗浄液が淀まない洗浄水槽を使用する
2)強度について、特別に弱い部分のない洗浄水槽を使用する
3)洗浄液の分布を均一にする(Do濃度、液温、流速 等)
4)振動子の上面の洗浄液の流れを調節する
(流量・流速・バラツキをコントロールする)
5)超音波の周波数と出力にあわせた液循環を行う
6)機械設計としての洗浄水槽の強度は超音波周波数に対して設定する
7)洗浄水槽の製造方法を明確にして、超音波の水槽による減衰レベルを設定する
8)流体に対する洗浄水槽の特性を明確にする(例 コーナー部の設計)
9)超音波の周波数・出力に対する洗浄水槽の特性を明確にする
(振動子・振動板の位置と水槽の関係を調整する
洗浄水槽の超音波伝播特性を明確にする)
10)洗浄システムとしての制御構造などとの最適化を行う
以上のパラメータを念頭に超音波洗浄を検討する(あるいは、現状の洗浄を見直す)
コメント
音響流とキャビテーションは相反する現象だと考えています
しかし、どちらかをなくすことは大変難しいため
バランスを調整し、最適化することが重要だと考えています