超音波システム研究所

超音波の新しい利用に関するブログです

オリジナル超音波実験 ultrasonic-labo

2021-03-06 17:31:01 | 超音波システム研究所2011
オリジナル超音波実験 ultrasonic-labo


超音波システム研究所は、
超音波洗浄器に関して、
超音波加湿器を利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。

超音波伝搬状態の測定・解析・評価・技術に基づいた、
 精密洗浄・加工・攪拌・・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、1000リッターの水槽でも、
 対象物への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 治工具(弾性体:金属・ガラス・樹脂)の利用です、
 対象物の条件・・・により
 超音波の伝搬特性を確認することで、
 オリジナル非線形共振現象(注1)として
 対処することが重要です

注1:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象


様々な分野への利用が可能になると考え
 各種コンサルティングにおいて提案実施しています。



  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<<脱気ファインバブル(マイクロバブル)発生液循環装置>> ultrasonic-labo

2021-03-06 17:26:52 | 超音波システム研究所2011
<<脱気ファインバブル(マイクロバブル)発生液循環装置>> ultrasonic-labo


超音波システム研究所は、
複数の異なる周波数の「超音波振動子」を利用する基礎技術を開発しました。

この技術は
 定在波の制御により、キャビテーションと加速度の効果を
 具体的な伝搬周波数のスペクトルとして変化させるという技術です。

 周波数28+72kHz、出力200Wの超音波照射で、
 1ミクロンの分散効果を実現させることも
 周波数28+40kHz、出力280Wの超音波照射で、
 ダメージを発生させずに洗浄することも可能です。

 オリジナルの超音波伝搬状態の測定・解析技術により、
 振動子の組み合わせによる
 目的に合わせた(洗浄、加工、撹拌・・)
 制御状態が実現することを確認しています。



  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

オリジナル超音波実験 ultrasonic-labo

2021-03-06 17:23:55 | 超音波システム研究所2011
オリジナル超音波実験 ultrasonic-labo


<<脱気ファインバブル(マイクロバブル)発生液循環装置>>


1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です


3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、
20μ以下のファインバブル(マイクロバブル)が発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。


5)上記の脱気ファインバブル(マイクロバブル)発生液循環装置に対して
超音波を照射すると
ファインバブル(マイクロバブル)を超音波が分散・粉砕して
ファインバブル(マイクロバブル)の測定を行うと
ウルトラファインバブルの分布量がファインバブルの分布量より多くなります
上記の状態が、超音波を安定して制御可能にした状態です。



  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

オリジナル超音波実験 ultrasonic-labo

2021-03-06 16:44:20 | 超音波システム研究所2011
オリジナル超音波実験 ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

メガヘルツの非線形振動現象をコントロールする超音波発振制御技術 ultrasonic-labo

2021-03-06 15:47:31 | 超音波システム研究所2011
メガヘルツの非線形振動現象をコントロールする超音波発振制御技術 ultrasonic-labo


超音波システム研究所は、
メガヘルツの超音波発振制御プローブの開発製造技術を応用して、
「非線形振動現象をコントロールする超音波制御技術」を開発しました。

超音波伝搬状態の測定・解析・評価技術に基づいた、
 オリジナル非線形共振現象(注1)の制御技術です。

精密洗浄・加工・攪拌・検査・表面処理・・・への新しい応用技術です。

注1:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

各種材料の音響特性(表面弾性波)を効率よく利用するため、
 表面の残留応力分布の緩和処理が簡単に実現できます。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として
 オリジナル発振制御方法(注2)を応用発展しました。

注2:オリジナル発振制御方法
 2種類の超音波発振を行います
 一つは、スイープ発振制御を行います
 もう一つは、パルス発振制御を行います
 詳細な設定は、目的・対象物・治工具・・
 システムとしての振動系から論理モデルに基づいて設定します
 (動作確認により微調整を行い、使用経過の中で
  より良い状態に発展させていきます
  詳細な制御設定は、使用者によるノウハウとなります)

ポイントは
 超音波素子表面の表面弾性波利用技術です、
 対象物の条件・・・により
 超音波の伝搬特性を確認(注3)することで、
 オリジナル非線形共振現象として
 過渡超音応力波(注4)に対処することが重要です

注3:超音波の伝搬特性
 非線形特性
 応答特性
 ゆらぎの特性
 相互作用による影響


注4:過渡超音応力波
 変化する系における、ダイナミック加振と応答特性の確認
 時間経過による、減衰特性、相互作用の変化を確認
 上記に基づいた、過渡超音応力波の解析評価


様々な分野への利用が可能になると考え
 各種コンサルティングにおいて提案しています。

コンサルティング内容
1)超音波の非線形現象をコントロールする技術の説明
2)超音波の非線形現象をコントロールする方法の説明
3)超音波の非線形現象をコントロールする技術の応用方法の説明
4)その他(具体的な超音波装置への適用)
5)デモンストレーションによる説明
 ・・・・・

詳細に興味のある方は
 超音波システム研究所にメールでお問い合わせください。



  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<<脱気マイクロバブル発生液循環装置>> ultrasonic-labo

2021-03-06 15:44:48 | 超音波システム研究所2011
<<脱気マイクロバブル発生液循環装置>> ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

オリジナル超音波実験(超音波システム研究所) Ultrasonic-labo

2021-03-06 14:30:56 | 超音波システム研究所2011
オリジナル超音波実験(超音波システム研究所) Ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

表面弾性波を利用した、超音波制御技術 Ultrasonic-labo

2021-03-06 14:25:57 | 超音波システム研究所2011
表面弾性波を利用した、超音波制御技術 Ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

音圧測定解析に基づいた、超音波システムの開発技術 ultrasonic-labo

2021-03-06 14:21:08 | 超音波システム研究所2011
音圧測定解析に基づいた、超音波システムの開発技術 ultrasonic-labo 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究所

2021-03-06 11:46:11 | 超音波システム研究所2011

超音波実験写真 Ultrasonic experiment photo


<<超音波実験写真>>

https://youtu.be/GpfIlPVBt3o

https://youtu.be/zGG5c8uHQ9A

https://youtu.be/kKwKOqFPs2Q

https://youtu.be/iw-G8AF7_Ko


https://youtu.be/WDCOuQevwnM

https://youtu.be/drMGvtgkXiE

https://youtu.be/AO88IlWeMtI


https://youtu.be/9_LnGkVJe30

https://youtu.be/fMnsMsxcxds

https://youtu.be/bKUsPoTZXtc


https://youtu.be/bw7fqvfR3SI

https://youtu.be/dGYefsBuHO0

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする