小型ポンプによる「脱気・マイクロバブル発生装置」
小型ポンプを使用した
超音波<実験・研究・開発>に適した
脱気・マイクロバブル発生装置」を開発しました。
-今回開発したシステムの応用事例-
ガラス製の水槽を利用した化学反応実験
調理用機器を利用した表面改質実験
メガネの洗浄器による洗浄実験
各種の攪拌実験
・・・・・・・
「脱気・マイクロバブル発生装置」は
中性洗剤、アルコールに対しても利用可能です。
現在利用している超音波洗浄液・・・に対しても
場合によっては利用することができます。
「脱気・マイクロバブル発生装置」による効果は
効率的な超音波照射を実現するとともに
ナノバブルの発生につながります。
さらに、一定時間の超音波照射により
ナノバブルの量がマイクロバブルの量より多くなます。
その結果、
非常に安定した超音波照射制御を行うことができます。
(マイクロバブル・伝搬状態・・・の計測・解析により確認しています)
様々な応用事例が発展しています。
充電式超音波洗浄器(50kHz 10W)と
治工具(樹脂容器、ガラス容器、ステンレス容器・・)を利用した
超音波利用(音響流の制御)技術に関する実験動画を公開しています。
超音波伝搬状態の変化を
超音波テスターで測定・解析します。
音圧測定装置:超音波テスターの特徴(100MHzタイプの場合)
*測定(解析)周波数の範囲
仕様 0.1Hz から 100MHz
*超音波発振
仕様 1Hz から 1MHz
*表面の振動計測が可能
*24時間の連続測定が可能
*任意の2点を同時測定
*測定結果をグラフで表示
*時系列データの解析ソフトを添付
超音波プローブによる発振・測定・解析システムです。
測定したデータについて、
位置や状態と、弾性波動を考慮した解析で、
各種の音響特性として検出し
目的に合わせて、応用(制御)します。
超音波システム研究所は、
対象物の音響特性(オリジナルパラメータ)を評価することで
目的(洗浄、攪拌、改質・・・)のレベルに合わせた
キャビテーションと音響流をコントロールする
洗浄(代数)モデルと
超音波(ダイナミック制御)技術を開発しました。
今回開発した技術は、
超音波テスター(オリジナル装置)による伝搬状態の変化を、
時系列データの各種解析技術を利用して
音響特性として検出します。
超音波の非線形現象を特に重視した
評価基準(抽象代数モデル:スペクトルシーケンス)により
各種の相互作用を統計処理で判断します。
表面の音響特性
音響特性・相互作用・目的(洗浄、攪拌、改質・・・)のレベルを考慮した
最適化(抽象代数モデルの利用)により
目的とする超音波の伝搬状態を推定します。
推定した超音波の状態を実現するために
専用水槽、液循環、超音波装置の発振周波数、出力・・を
超音波(ダイナミック制御)技術として設定します。
説明は、大まかな概要です
具体的な条件(水槽、振動子、サイズ・・・)に合わせて
超音波の伝搬状態を計測解析する必要があるため
体系的な一般論にすることは難しいと考えています。
特に、洗浄対象物の構造・材質・数量・・・により
音響特性は大きく変わります。
音響特性の違いにより
定在波や音響流に関する
洗浄効果(超音波の影響)・・の変化を多数確認しています。
参考
表面弾性波の基礎実験
超音波の非線形現象・相互作用