超音波システム研究所

超音波の新しい利用に関するブログです

超音波専用水槽を利用した実験 Ultrasonic technology

2017-01-22 19:26:08 | 超音波システム研究所2011

超音波専用水槽を利用した実験 Ultrasonic technology


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<超音波のダイナミックシステム:液循環制御技術> ultrasonic-labo

2017-01-22 07:44:18 | 超音波システム研究所2011

<超音波のダイナミックシステム:液循環制御技術> ultrasonic-labo

<超音波のダイナミックシステム:液循環制御>

超音波水槽内の液循環を
 システムとしてとらえ、解析と制御を行う

多くの超音波(水槽)利用の目的は、
 水槽内の液体の音圧変化の予測
 あるいは制御にあります。

しかし、多くの実施例で
 理論と実際の違いによる問題が
 多数指摘されています。

この様な事例に対して

1)障害を除去するものは
 統計的データの解析方法の利用である
 <超音波伝搬状態の計測・解析技術>

2)対象に関するデータの解析の結果に基づいて
 対象の特性を確認する
 <洗浄対象物、攪拌対象物、治工具・・・の
 音響特性を検出する技術>

3)特性の確認により
 制御の実現に進む
 <キャビテーションのコントロール技術>

といった方法により
 超音波を効率的な利用状態に改善し
 目的とする超音波の利用を実現した
 液循環効果の利用例が多数あります

参考
ダイナミックシステムの統計的解析と制御
 :赤池弘次/共著 中川東一郎/共著:サイエンス社

物の動きを読む
 http://ultrasonic-labo.com/?p=1074


ポイント(ノウハウ)は
 液循環制御による
 超音波の変化を測定解析することです!

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

オリジナル超音波実験:表面弾性波の観察 Ultrasonic experiment

2017-01-22 07:44:02 | 超音波システム研究所2011

オリジナル超音波実験:表面弾性波の観察 Ultrasonic experiment


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

脱気・マイクロバブル発生液循環 (超音波技術) Degassed microbubble generating circulation

2017-01-22 07:43:18 | 超音波システム研究所2011

脱気・マイクロバブル発生液循環 (超音波技術)

Degassed microbubble generating circulation

脱気・マイクロバブル発生液循環
(超音波制御技術)

この動画は
超音波とマイクロバブルによる
表面改質処理を行った水槽を利用して、
(超音波の共振・減衰を制御している)
適切な液循環の状態を紹介しています

ポイントは
適切な超音波と液循環のバランスです
液循環の適切な流量・流速と超音波(キャビテーション)の設定により
超音波(音響流・加速度効果)の伝搬状態をコントロールしています

脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します

液循環により、以下の自動対応が実現しています

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します

もうひとつは
適切な超音波照射時は、大量な空気・・が水槽内に取り入れられても
大きな気泡となって
水槽の液面から出ていきます

従って、超音波照射を行っていない状態で
大量にオーバーフローを行い続けると減衰します。

しかし、この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります
(説明としては、キャビテーション核の必要性が空気を入れる理由です)

超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません

マイクロバブルの効果です

脱気・マイクロバブル発生液循環が有効な理由です

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする