超音波システム研究所

超音波の新しい利用に関するブログです

超音波システム研究所

2021-01-06 19:09:34 | 超音波システム研究所2011

<脱気・マイクロバブル発生液循環システム>

超音波液循環技術の説明

1)超音波専用水槽(オリジナル製造方法)を使用しています
2)水槽の設置は
  1:専用部材を使用
  2:固有振動と超音波周波数・出力の最適化を行っています
3)超音波振動子は専用部材を利用して設置しています
  (専用部材により、定在波、キャビテーション、音響流の
   利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します
   (標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています

上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)

目的の超音波状態は音圧測定解析で行います

ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします

脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します

液循環により、以下の自動対応が実現しています

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します

もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません

この濃度分布の解決がマイクロバブルの効果です

脱気・マイクロバブル発生液循環が有効な理由です

以下の動画は
複数の超音波と
複数のマイクロバブル発生液循環装置による
超音波のダイナミック制御を実現させています

https://youtu.be/_4RszRCpU88

https://youtu.be/_zvMqCa8wTI

https://youtu.be/r5gCyEtp1QE

https://youtu.be/y8ccTXJhAvw

https://youtu.be/hl1XGaP_jjE

https://youtu.be/bLS4ncbOgWM

https://youtu.be/-SiwslgL2g4

https://youtu.be/jQAc6j1vGOk

https://youtu.be/UvMlb6wxzas

https://youtu.be/W6lcI2T6mek

https://youtu.be/HeyqGSfvoBA

https://youtu.be/KsD3hYr-m68

https://youtu.be/LZY2gXPIiRE

https://youtu.be/uZiuum71pPk

https://youtu.be/kKXl9jt3SXc

https://youtu.be/x9xmRPYopC0

https://youtu.be/6ScLneXAlXY

https://youtu.be/Fe85NzP42AE

https://youtu.be/JQiSDqFHuCk

https://youtu.be/F6vMusrIhYc

https://youtu.be/S85RjXRcesI

https://youtu.be/mMolyo_9DH0

https://youtu.be/MZ08ZShQBgM

上記の技術により
目的の超音波利用に合わせた
水槽の構造設計や液循環位置(ポンプへの吸い込み口、吐出口)は
非常に重要ですが
目的・サイズ・洗浄液・・によりトレードオフの関係が発生する場合があり、
一般的な設定はありません
(具体的な数値は、コンサルティング対応しています)

適切な設定が実現すると
マイクロバブルは超音波作用によりナノバブルに分散します
ナノバブルによる超音波の安定性は、マイクロバブルに比べて大きく
制御がより簡単になります
(具体的な制御は、音圧測定・・・コンサルティング対応しています
 洗剤の使用や撹拌・・では、
 通常の洗浄とは反対の対応事例が多い傾向にあります)

超音波制御装置(制御BOX)
http://ultrasonic-labo.com/?p=4906

シャノンのジャグリング定理を応用した
「超音波制御」方法
http://ultrasonic-labo.com/?p=1753

超音波専用水槽の設計・製造技術
http://ultrasonic-labo.com/?p=1439

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

音圧測定解析に基づいた、超音波システムの開発技術

2021-01-06 19:05:09 | 超音波システム研究所2011

 

https://youtu.be/CgqmCsN7xb4

https://youtu.be/f5MXBd9PXX4

https://youtu.be/N_RALkmEzpY

https://youtu.be/MR5DAFAba3k

https://youtu.be/OeGNhrkXw9o

https://youtu.be/3FERgL6GaY0

https://youtu.be/NatmYEqMVDo

https://youtu.be/kz5sCsIv5zg

https://youtu.be/o9r4nL5jlKM

https://youtu.be/rSJZwBlKrtc

https://youtu.be/AS1YeMrtuJ8

https://youtu.be/Hy7MsQwy1sM

<< 超音波資料 >>

コストを下げて品質を改善した洗浄機の事例no2特別
http://ultrasonic-labo.com/wp-content/uploads/44b5b12b07f104e6bfb9c495337cc0ac-1.pdf

超音波とファインバブルによる超音波洗浄技術
http://ultrasonic-labo.com/wp-content/uploads/95f1450d8b79441a24857c113d890d7e-2.pdf

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波の非線形振動

2021-01-06 19:02:58 | 超音波システム研究所2011

超音波の非線形振動

非線形振動(発振制御、音、音響流、相互作用・・・)に含まれる
低周波の振動エネルギー対応(工夫)により
超音波の非線形現象をコントロール可能にしています。

各種の実施結果(注)から
様々な組み合わせによる幅広い対応を提案・実施しています。

注:
1)ナノレベルの乳化・分散
2)溶剤を利用した超音波洗浄
3)超音波霧化サイズの制御
4)化学反応制御実験
5)ナノレベルの触媒の攪拌・乳化・分散
6)均一な粒子製造への応用
7)金属の表面処理
8)メガヘルツの超音波伝搬
9)精密洗浄
10)アルミダイキャストの均一化
11)各種溶剤・・・の均一化
12)その他・・・

この技術(詳細なノウハウ・・)を
コンサルティング事業として、提供(対応)しています。

ポイントは
表面弾性波の利用方法です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1、2)として
対処することが重要です

 

注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象

注2:過渡超音応力波
変化する系における、ダイナミック加振と応答特性の確認
時間経過による、減衰特性、相互作用の変化を確認
上記に基づいた、過渡超音応力波の解析評価

 
 
 
 
 
 

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム

2021-01-06 17:03:02 | 超音波システム研究所2011

-システムの応用事例-
ガラス製の水槽を利用した精密洗浄
間接容器を利用した表面改質
ナノレベルの攪拌・乳化・分散・粉砕
各種の化学反応処理
メッキ液・コーティング液の開発
ナノ粒子の製造
複雑な形状へのコーティング・・表面処理
表面の残留応力の緩和処理
水の改質(ラジカル化)
表面弾性波を利用した目的のサイズの霧化
・・・・・・・

補足
2種類の超音波振動子を利用するかわりに
1台の超音波振動子の発振制御、
あるいは液循環制御との組み合わせにより
1台の超音波でも対応可能ですが、
調整・制御は難しくなります

img_3706 img_3695  img_3690

参考動画

https://youtu.be/ZCZcYmKiERA

https://youtu.be/C_b-zbll07E

https://youtu.be/8GvSMfb6PIM

https://youtu.be/pLLWdqOWqm8

https://youtu.be/t6Lvkq6ECFQ

https://youtu.be/Qxo6nvCdHFQ

https://youtu.be/YSahz_wEfGo

https://youtu.be/cMPUt3MEcsc

https://youtu.be/cVBTd2QYw-A

https://youtu.be/gT1dKVk0JvQ

https://youtu.be/cJptilQxG5M

https://youtu.be/b4adcU21X5I

https://youtu.be/iICSjtG4FtU

https://youtu.be/TZC0UKJOric

img_3694

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波実験 ultrasonic-labo

2021-01-06 17:01:03 | 超音波システム研究所2011

超音波実験 ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

 超音波の非線形現象

2021-01-06 16:59:58 | 超音波システム研究所2011

複数の超音波発振制御技術

複数の超音波発振制御技術

超音波システム研究所は、
表面弾性波の非線形振動現象を利用した
複数の超音波を発振制御する技術を開発しました。

複雑な振動状態について、
複数の超音波発振制御により、
以下の項目を目的に合わせて最適化します。

1)線形現象と非線形現象
2)相互作用と各種部材の音響特性
3)音と超音波と表面弾性波
4)低周波と高周波(高調波と低調波)
5)発振波形と出力バランス
6)発振制御と共振現象(オリジナル非線形共振現象(注1))
・・・
上記について
音圧測定データに基づいた
統計数理モデル(スペクトルシーケンス (注2))により
表面弾性波の新しい評価方法で最適化します。

(注1)オリジナル非線形共振現象
オリジナル発振制御により発生する高次の高調波を
ダイナミックな時間経過の変化で発生する共振現象により
高い振幅で高い周波数を実現させたことで起こる
超音波振動の共振現象

(注2)超音波の変化を、抽象代数の圏論やコホモロジーの
スペクトルシーケンスに適応させるといった
オリジナル方法を利用した表現(統計数理モデル)

モノイドの圏
http://ultrasonic-labo.com/?p=1311

超音波洗浄、加工、攪拌、・・・表面検査、・・ナノテクノロジー、・・
応用研究・・・ 様々な対応が可能です。

<<実験動画>>

https://youtu.be/0KvI8J7NFdQ

https://youtu.be/dFj3wRsCDjY

https://youtu.be/PO4tfJpE6x0

https://youtu.be/yke5mK3xTyw

https://youtu.be/fCIVBFjJ2sI

https://youtu.be/2kTdmRAtPlg

https://youtu.be/0KvI8J7NFdQ

https://youtu.be/zMEnGvb7Mv8

https://youtu.be/J2EufaGo898

https://youtu.be/SaIIQQMtvQQ

https://youtu.be/uEhtBidWuOE

上記の実験は、
超音波機器はそのままで、制御条件の調整により
1000-3000リットルの水槽に対しても適用できます

制御ノウハウ部分についてはコンサルティング対応しています



<<< 超音波の非線形現象 >>>

超音波の非線形現象をコントロールする技術
http://ultrasonic-labo.com/?p=14878

超音波洗浄に関する非線形制御技術
http://ultrasonic-labo.com/?p=1497

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究所

2021-01-06 16:59:00 | 超音波システム研究所2011

超音波伝搬現象の分類

IMG_2926IMG_2949

IMG_2805IMG_27501

IMG_6219IMG_6207

IMG_6163IMG_6148

IMG_8016IMG_0131oo

IMG_20441

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

ファインバブル(マイクロバブル)を利用した超音波洗浄機

2021-01-06 16:58:11 | 超音波システム研究所2011

ファインバブルを利用した超音波洗浄機

img_1657

脱気ファインバブル発生液循環システム

 

 

 

 

 

 

 

 

超音波システム研究所は、
超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
超音波加工、攪拌、化学反応・・にも利用可能な、
マイクロバブルを利用した超音波洗浄機を開発しました。

img_1748

推奨システム概要

1:超音波とマイクロバブルによる表面改質処理を行った
2種類の超音波振動子(標準タイプ 38kHz,72kHz)

2:超音波とマイクロバブルによる表面改質処理を行った
超音波専用水槽(標準タイプ 内側寸法:500*310*340mm)

3:脱気・マイクロバブル発生液循環システム

4:制御BOXによる、超音波出力と液循環の最適化制御システム

5:超音波テスターによる、音圧管理システム

img_1567

超音波
MIRAE ULTRASONIC TECH. CO
1)精密洗浄シリーズ(72KHz 300W)
株式会社カイジョー
2)投込振動子型超音波洗浄機 200G (38kHz 150W)

あるいは
MIRAE ULTRASONIC TECH. CO
3)精密洗浄シリーズ(28KHz 300W)

注意:水槽・振動子・治工具については、エージング処理により
音響特性の調整対応が可能です

img_1687

*特徴

超音波専用水槽による効果的な装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です

洗浄・攪拌・表面改質・・・対象と目的により
2種類の超音波(振動子)を組み合わせて制御します

推奨タイプの組み合わせは
38kHz、72kHzの状態です
(主要周波数の実測値事例 33.7kHz 71.4kHz
水槽により数値は大きく変化します)

img_1655

洗浄・攪拌・表面改質・・・対象と目的による
2種類の超音波(振動子)の組み合わせ事例
1:38kHz、70kHz
2:25kHz、38kHz
3:24kHz、68kHz
4:33kHz、28kHz
5:33kHz、40kHz
6:33kHz、71kHz
・・・・・
・・・・・

img_1819

特殊樹脂を利用した
 メガヘルツの超音波の利用事例
11: 28kHz、 1MHz
12: 28kHz、 3MHz
13: 28kHz、 5MHz
14: 38kHz、 1MHz
15: 38kHz、 3MHz
16: 38kHz、 5MHz
・・・
・・・

 

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

ものの表面を伝搬する超音波のダイナミック特性

2021-01-06 16:57:43 | 超音波システム研究所2011

 

 
 
参考技術
<<超音波プローブ技術>>メガヘルツの超音波発振制御プローブ
http://ultrasonic-labo.com/?p=14570メガヘルツの超音波を利用する超音波システム技術
http://ultrasonic-labo.com/?p=14350超音波プローブ
http://ultrasonic-labo.com/?p=11267超音波プローブによる
<メガヘルツの超音波発振制御>技術
http://ultrasonic-labo.com/?p=1811
 

超音波システム研究に関する、各種技術の紹介

洗浄・攪拌・表面改質・化学反応促進・・・
空中超音波・シミュレーション・計測装置・・・
・・・実験・研究・開発・システム・・・・
・・・・・・・
各種の動画・スライドショーを
YouTubeに投稿しています。


参考(投稿)

https://youtu.be/xOZHB8JhCtY

https://youtu.be/CRjoqAZ1_K8

https://youtu.be/qstOIYdbe2E

https://youtu.be/eXqCB1vqkJE

https://youtu.be/nrTSCY8lyGo

 
 

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

流水式超音波システム ultrasonic-labo

2021-01-06 14:24:45 | 超音波システム研究所2011
流水式超音波システム ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする