超音波システム研究所

超音波の新しい利用に関するブログです

オリジナル超音波プローブを利用した「音響流」制御技術 ultrasonic-labo

2020-03-30 19:21:14 | 超音波システム研究所2011

オリジナル超音波プローブを利用した「音響流」制御技術 ultrasonic-labo

超音波システム研究所(所在地:東京都八王子市)は、
 小型ポンプを利用した液循環により
 超音波(音響流)の伝搬状態をダイナミックに制御する
 「流水式超音波(音響流)制御技術」を開発しました。

超音波テスターによる
 流れと超音波の複雑な変化を、
 水槽・液体(マイクロバブル)・超音波振動子・・・
 の相互作用を含めた音圧解析により
 利用目的に合わせて、
 音響流の変化をコントロールするシステム技術です。

実用的には、
 現状の液循環装置について
 ON/OFF制御(あるいは流量・流速・・・の制御)を
 装置の設置状態、対象物を含めた表面弾性波を考慮して
 各種相互作用・振動モードを最適化する方法です。

特に、ポンプの特性を利用して、
 液体と気体を交互に循環させる・・・により
 新しい超音波・マイクロバブルの効果を実現しています。

ナノレベルの応用では、
 「流水式超音波システム」として
 20メガヘルツまでの周波数変化を含めた
 「超音波シャワー」による
 効率の高い超音波利用が実現しています。


-今回開発したシステムの応用実施事例-

オゾンと超音波の組み合わせ技術

低出力(50W以下)による5mサイズの水槽への超音波伝搬

ガラス・レンズ部品の精密洗浄(超音波シャワー技術)

複雑な形状・線材・真空部品・・・の表面改質(共振現象の制御技術)

溶剤・洗剤・・・・の化学反応(超音波と流れによる攪拌)

ナノレベルの粉末・塗料・触媒・・・攪拌・分散(表面弾性波の制御技術)

マイクロレベルの金属エッジ部のバリ取り

めっき・コーティング・表面処理・・・

・・・・・・・

上記の技術は、音圧(非線形現象)測定・解析に基づいて、
 表面弾性波と流体の流れに関して
 ダイナミック制御を実現させる
 新しい超音波システムの開発方法です。

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

音と超音波の組み合わせを利用した超音波制御技術

2020-03-30 18:57:11 | 超音波システム研究所2011

音と超音波の組み合わせを利用した超音波制御技術

超音波システム研究所は、
超音波伝搬状態のコントロールに関して、
発振機器(ファンクションジェネレータ・・・)と組み合わせることで、
1-100MHzの超音波伝搬状態を利用可能にする
メガヘルツの超音波発振制御プローブ製造技術を開発しました。

メガヘルツの超音波発振制御プローブ:概略仕様
 測定範囲 0.01Hz~100MHz
 発振範囲 0.1kHz~10MHz
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ


超音波伝搬状態の測定・解析・評価技術に基づいた、
 精密洗浄・加工・攪拌・検査・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、3000リッターの水槽でも、
 数トンの構造物、工作機械、・・への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 超音波素子表面の表面弾性波利用技術です、
 対象物の条件・・・により
 超音波の伝搬特性を確認(注1)することで、
 オリジナル非線形共振現象(注2、3)として
 対処することが重要です

注1:超音波の伝搬特性
 非線形特性
 応答特性
 ゆらぎの特性
 相互作用による影響

注2:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

注3:過渡超音応力波
 変化する系における、ダイナミック加振と応答特性の確認
 時間経過による、減衰特性、相互作用の変化を確認
 上記に基づいた、過渡超音応力波の解析評価

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波実験 ultrasonic-labo

2020-03-30 18:40:55 | 超音波システム研究所2011

超音波実験 ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波美顔器を利用した「応用技術」

2020-03-30 17:46:12 | 超音波システム研究所2011

超音波美顔器を利用した「応用技術」


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Slideshow Technology of supersonic wave system

2020-03-30 17:24:45 | 超音波システム研究所2011

Slideshow Technology of supersonic wave system


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究に関する動画・写真

2020-03-30 17:14:43 | 超音波システム研究所2011

超音波システム研究に関する動画・写真


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

メガヘルツの超音波発振制御プローブを利用した実験動画  ultrasonic-labo

2020-03-30 17:00:19 | 超音波システム研究所2011

メガヘルツの超音波発振制御プローブを利用した実験動画  ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究所

2020-03-30 16:49:35 | 超音波システム研究所2011

超音波システム研究所は、
超音波の非線形性に関する現象を含めた状態を、
抽象数学(圏論)における
Monoid(モノイドの圏)モデルとして、開発しました。




このアイデアに基づいて、
 超音波制御を行う、具体的な方法を
 結び目図式のスペクトル系列として、開発しました。

今回開発した制御方法は、
 超音波の音圧データを
 自己回帰モデルでフィードバック解析することで、
 キャビテーションと音響流の効果に関する
 非線形現象の分類技術(高調波、低調化)を発展させました。





これまでのデータ解析から
 効果的な利用方法を
 以下のような
 4つのタイプに分類してダイナミックに制御します。

 1:キャビテーション主体型
 2:音響流主体型
 3:ミックス型
 4:変動型

 上記の各タイプについて
  安定性・変化の状態・・・に関して
  詳細な分類・調整により、
  目的と効果に対する、効率のよい
  各種条件の設定・調整が可能になりました。

 特に、洗浄に関しては
  汚れの特性やバラツキに関する情報が得られにくいため
  このような分類・解析をベースに実験確認することで
  効果的な超音波制御が、実現します。





 この分類・制御の本質的なアイデアは、
 超音波による定在波の特徴を、
 抽象代数学の「導来関手」に適応させるということと、
 非線形現象の特徴を、
 Monoid(モノイドの圏)モデルに適応させるということです。

 今回、複雑な超音波の変化を
 結び目図式から得られるスペクトル系列として表現することで
 時間経過で変わっていく、不安定な超音波の状態を
 目的に合わせて、コントロールできるようになりました。

 抽象的ですが
 超音波の伝搬状態を計測解析するなかで
 定在波と音響流に関する的確な解析により
 キャビテーションを主体とした超音波の効果・・を
 効果的にコントロールできる事例が増えたことから
 公表することにしました。


なお、超音波システム研究所の「非線形制御技術」は、
 この方法による、
 具体的な技術(流水式超音波、超音波シャワー)として対応しています。

応用技術として
 非線形現象の発生状態に関する研究開発を進めています。
 「超音波利用の最も大きな効果が、非線形状態の変化にある」
  という考え方が、さらに一歩進んだと考えています。



<< 超音波のMonoid(モノイドの圏)モデル >>

基本的な超音波発振による現象全体をRing(環の圏)として、
キャビテーション・・による(発振周波数を主体とした)現象を
 「アーベル群の圏」
加速度・音響流・・による(伝搬周波数の変化を主体とした)現象を
 「Monoid(0元をもつ乗法の一元体)」
とするモデルを開発しました。


<< 超音波の三角化されたカテゴリーモデルによる制御 >>

キャビテーションと音響流による現象について
三角化された加法的カテゴリーモデルにより
制御パラメータ(流れ・表面弾性波、出力・パワー、周波数・発振)を
スペクトル系列のコホモロジーで、最適化します。




参考

超音波の非線形振動
http://ultrasonic-labo.com/?p=13908

モノイド圏モデルを利用した超音波制御技術
http://ultrasonic-labo.com/?p=9692

超音波の洗浄・攪拌・加工に関する「論理モデル」
http://ultrasonic-labo.com/?p=3963

代数モデル
http://ultrasonic-labo.com/?p=1311

数学的理論
http://ultrasonic-labo.com/?p=1350

音色と超音波
http://ultrasonic-labo.com/?p=1082

物の動きを読む
http://ultrasonic-labo.com/?p=1074

3種類の異なる周波数の「超音波振動子」を利用する技術
http://ultrasonic-labo.com/?p=3815

2種類の異なる「超音波振動子」を同時に照射するシステム
http://ultrasonic-labo.com/?p=2450

オリジナル超音波システムの開発技術
http://ultrasonic-labo.com/?p=1546

超音波資料
http://ultrasonic-labo.com/?p=1905

超音波(論理モデルに関する)研究開発資料
http://ultrasonic-labo.com/?p=1716

音圧測定に基づいた「超音波洗浄資料」の無料提供
http://ultrasonic-labo.com/?p=3829





コンサルティング対応として
上記のモデルを適切に設定することで
以下の技術を実現します。
 1)ジャグリング定理を応用した「超音波制御」技術
 2)音色と超音波・音と超音波の組み合わせ制御技術
 3)「脱気・マイクロバブル発生装置」の利用技術
 4)超音波機器の<計測・解析・評価>技術


超音波コンサルティング
http://ultrasonic-labo.com/?p=2187

超音波コンサルティング
http://ultrasonic-labo.com/?p=2295

超音波装置の最適化技術をコンサルティング提供
http://ultrasonic-labo.com/?p=1401

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

統計処理(多変量自己回帰モデル 音圧データの解析)

2020-03-30 16:48:49 | 超音波システム研究所2011

統計処理(多変量自己回帰モデル 音圧データの解析)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

脱気マイクロバブル(ファインバブル)発生液循環装置

2020-03-30 16:48:08 | 超音波システム研究所2011

<<脱気マイクロバブル(ファインバブル)発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、20μ以下のマイクロバブルが発生します。
上記が脱気マイクロバブル発生液循環装置の状態です

5)上記の脱気マイクロバブル発生液循環装置に対して
超音波を照射すると
マイクロバブルを超音波が分散・粉砕して
マイクロバブルの測定を行うと
ナノバブルの分布量がマイクロバブルの分布量より多くなります
上記の状態が、超音波を安定して制御可能にした状態です

以下基礎実験の様子です

適切な液循環とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します

https://youtu.be/Oq_dLh2QgS0

https://youtu.be/E61bW5Hj3vI

https://youtu.be/mRrqz_GoVVk

https://youtu.be/pH2VxZc9-OQ

マイクロバブルによる超音波(音響流)のダイナミック制御

https://youtu.be/hnJCnmDuVK0

https://youtu.be/4e8CAj1-vLE

https://youtu.be/FztjKNGN9Fo

https://youtu.be/gYjCKGI1He4

小型・脱気マイクロバブル発生液循環システム

超音波を効率よく利用するための
「液循環装置」です

目的に合わせた
液循環制御により
超音波の状態をコントロールできます

小型ギアポンプ

https://youtu.be/n2XlczKr4C4

https://youtu.be/dXMCfkoTeyc

https://youtu.be/DctFkgdilmk

https://youtu.be/X_SkCpWc2SE

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする