![](https://blogimg.goo.ne.jp/user_image/49/8b/4553b4d71573676e7184806e5c41bd89.png)
[Set 421,875 on Mr. Cube root]
[Japanese]
Following the last time, today's example is about actual solution of Cube root using abacus.
Today's example is simple - basic 1/3-multiplication table method, root is 2-digits case. You can check the Index page of all articles.
Cube root methods: Triple-root method, constant number method, 3a^2 method, 1/3-division method, 1/3-multiplication table method, 1/3-multiplication table alternative method, Multiplication-Subtraction method, 3-root^2 method, Mixing method, Exceed number method, Omission Method, etc.
Abacus steps to solve Cube root of 421,875
(Answer is 75)
"1st group number" is the left most numbers in the 3-digits groups of the given number for cube root calculation. Number of groups is the number of digits of the Cube root.
421,875 -> (421|875): 421 is the 1st group number. The root digits is 2.
![](https://blogimg.goo.ne.jp/user_image/50/77/b4769689cead046590fd93c095aae795.png)
Step 1: Place 421875 on GHIJKL.
![](https://blogimg.goo.ne.jp/user_image/13/85/8b7650ae9069ac60bfd160aff5e32fa8.png)
Step 2: The 1st group is 421.
![](https://blogimg.goo.ne.jp/user_image/54/e4/b4d6f1d8988ddfd17c61b0b009ca7a66.png)
Step 3: Cube number ≦ 421 is 343=7^3. Place 7 on C as the 1st root.
![](https://blogimg.goo.ne.jp/user_image/11/e5/885187cdd16814ba73e70c8a112ac1f2.png)
Step 4: Subtract 7^3 from the 1st group 421. Place 421-7^3=078 on GHI.
![](https://blogimg.goo.ne.jp/user_image/79/41/623153d677e39d92968bdec782ed3aa5.png)
Step 5: Focus on 78875 on HIJKL.
![](https://blogimg.goo.ne.jp/user_image/39/4e/f1f472cf7285db57db735ef459682ffe.png)
Step 6: Divide 78875 by 3. Place 78875/3=26291.6 on HIJKLM.
![](https://blogimg.goo.ne.jp/user_image/7f/2e/33e97e19d906957688215853d244c72a.png)
Step 7: Focus on 26 on HI.
![](https://blogimg.goo.ne.jp/user_image/45/8a/dec563dac6828b8dc6af86a913f7f407.png)
Step 8: Repeat division by triple root 7 until 4th digits next to 1st root. 26/7=3 remainder 5. Place 3 on E.
![](https://blogimg.goo.ne.jp/user_image/2d/32/c1e5f19f196181e6a2c2e6a4bae10158.png)
Step 9: Place remainder 05 on HI.
![](https://blogimg.goo.ne.jp/user_image/78/a0/bc462d8714bab6ecff74ed48c338a90f.png)
Step 10: Divide 52 on IJ by current root 7. 52/7=7 remainder 3
![](https://blogimg.goo.ne.jp/user_image/10/19/a3d6107350160b9c9d4629c3af8aa63a.png)
Step 11: Place 7 on F.
![](https://blogimg.goo.ne.jp/user_image/30/46/13e7965c3a5964d9e6f71a65233352b0.png)
Step 12: Place 03 on IJ.
![](https://blogimg.goo.ne.jp/user_image/7b/19/ec5daba677aba3cb74e146be4fcb5e65.png)
Step 13: Divide 39 on JK by current root 7. 39/7=5 remainder 4
![](https://blogimg.goo.ne.jp/user_image/29/dd/bab14d90c3d2965e9cfa10677f002157.png)
Step 14: Place 5 on G.
![](https://blogimg.goo.ne.jp/user_image/15/0b/5af3c3281618f9be226748333d7fff26.png)
Step 15: Place 04 on JK.
![](https://blogimg.goo.ne.jp/user_image/69/59/c50cbe37c70588df0fc1d2437868dfb3.png)
Step 16: Divide 37 on EF by current root 7. 37/7=5 remainder 2
![](https://blogimg.goo.ne.jp/user_image/73/32/bb5621032fd927087117795962efa9de.png)
Step 17: Place 5 on D as 2nd root.
![](https://blogimg.goo.ne.jp/user_image/4c/17/e41e4efbf3364d868ccae4403761f7bf.png)
Step 18: Place 02 on EF.
![](https://blogimg.goo.ne.jp/user_image/60/43/d62f68a7169989a3c1247e060e76008a.png)
Step 19: Subtract 2nd root^2 from 25 on FG. 25-5^2=0
![](https://blogimg.goo.ne.jp/user_image/68/e0/fe9058b092d52aede536eb6325450f45.png)
Step 20: Place 00 on FG.
![](https://blogimg.goo.ne.jp/user_image/6c/df/7f8bc131cdca2e00017343eef514128c.png)
Step 21: 00 on FG x 1st root and add 04.1 on JKL. 0X7+4.1=4.1
![](https://blogimg.goo.ne.jp/user_image/72/76/963e384ac29ad945085f455c2f2cb2ee.png)
Step 22: Place 04.1 on JKL. It means do nothing.
![](https://blogimg.goo.ne.jp/user_image/2a/c3/1efcffab2b03afdaa41f4cc842d4ea7c.png)
Step 23: Subtract 2nd root^3/3 from 41.6 on KLM. 41.6-5^3/3=0
![](https://blogimg.goo.ne.jp/user_image/3d/a0/f0028910b13fefef2e198c15bb83466f.png)
Step 24: Place 00.0 on KLM.
![](https://blogimg.goo.ne.jp/user_image/6a/a6/02c98d1cadbfe9cbc74a0f4a2d044868.png)
Step 25: Cube root of 421875 is 75.
![](https://blogimg.goo.ne.jp/user_image/64/90/b4c9606465cd0040c9d1c8408b002042.png)
Final state: Answer 75
Abacus state transition. (Click to Zoom)
![](https://blogimg.goo.ne.jp/user_image/36/d6/5b8ff17c6e14a71b787582c180a747e3.png)
It is interesting to compare with the Triple-root method.
Next article is also 1/3-multiplication table method.
Related articles:
How to solve Cube root of 1729.03 using abacus? (Feynman v.s. Abacus man)
https://blog.goo.ne.jp/ktonegaw/e/cff5d6e7ecaa07230b9cc7af10b23aed
Index: Square root and Cube root using Abacus
https://blog.goo.ne.jp/ktonegaw/e/f62fb31b6a3a0417ec5d33591249451b
Cube root 421,875 using abacus (Triple-root method 1)
https://blog.goo.ne.jp/ktonegaw/e/6a4c5516b2ede10271ac7e718daa4815
Please place your mouse on the buttons and click one by one. These are blog ranking sites.
![にほんブログ村 科学ブログ 物理学へ](https://blogimg.goo.ne.jp/user_image/05/0d/5a8dd65b22fb19995a76ac142488c719.png)
![人気ブログランキングへ](https://blogimg.goo.ne.jp/user_image/61/01/1b9cd83311fdf7d7cbffa113dfea11a1.png)
![](https://blogimg.goo.ne.jp/user_image/4c/cf/d9d69c9f86b74d235382790503be08b6.png)