![](https://blogimg.goo.ne.jp/user_image/71/d4/6a3f83991d81511e9058235e9e97a4ff.png)
[Set 110,592 on Mr. Cube root]
[Japanese]
Following the last time, today's example is about actual solution of Cube root using abacus.
Today's example is simple - basic 1/3-multiplication table method, root is 2-digits case and we require root reduction in the steps. You can check the Index page of all articles.
Cube root methods: Triple-root method, constant number method, 3a^2 method, 1/3-division method, 1/3-multiplication table method, 1/3-multiplication table alternative method, Multiplication-Subtraction method, 3-root^2 method, Mixing method, Exceed number method, Omission Method, etc.
Abacus steps to solve Cube root of 110,592
(Answer is 48)
"1st group number" is the left most numbers in the 3-digits groups of the given number for cube root calculation. Number of groups is the number of digits of the Cube root.
110,592 -> (110|592): 110 is the 1st group number. The root digits is 2.
![](https://blogimg.goo.ne.jp/user_image/18/4b/1c84d022577e5b8b90de293c64dbdf27.png)
Step 1: Place 110592 on GHIJKL.
![](https://blogimg.goo.ne.jp/user_image/5c/94/8e64597818114f86820d479c542b2494.png)
Step 2: The 1st group is 110.
![](https://blogimg.goo.ne.jp/user_image/69/12/33cfb4c3471a148c017e0ebe389a32a4.png)
Step 3: Cube number ≦ 110 is 64=4^3. Place 4 on C as the 1st root.
![](https://blogimg.goo.ne.jp/user_image/60/c4/f05b1f0aab3f59c4435fe022edc844a2.png)
Step 4: Subtract 4^3 from the 1st group 110. Place 110-4^3=046 on GHI.
![](https://blogimg.goo.ne.jp/user_image/62/d8/84872fe074025a7e0b4a657f242bc035.png)
Step 5: Focus on 46592 on HIJKL.
![](https://blogimg.goo.ne.jp/user_image/0c/2f/a0ba4ffcf8289dd045894e0fa023991d.png)
Step 6: Divide 46592 by 3. Place 46592/3=15530.6 on HIJKLM.
![](https://blogimg.goo.ne.jp/user_image/73/93/8a25c4eed92b924c6eb776e2a21d7a1d.png)
Step 7: Focus on 15 on HI.
![](https://blogimg.goo.ne.jp/user_image/68/62/dec090a9a4e4b925b39e2fe82df45510.png)
Step 8: Repeat division by triple root 4 until 4th digits next to 1st root. 15/4=3 remainder 3. Place 3 on E.
![](https://blogimg.goo.ne.jp/user_image/28/8c/71be02d132affb995fbcd37fe41b3a9d.png)
Step 9: Place remainder 03 on HI.
![](https://blogimg.goo.ne.jp/user_image/50/2c/8e5120f78df3ced316ab8f320a1fcd77.png)
Step 10: Divide 35 on IJ by current root 4. 35/4=8 remainder 3
![](https://blogimg.goo.ne.jp/user_image/19/bf/9fa5861a8af919e9ccbd1c064484c078.png)
Step 11: Place 8 on F.
![](https://blogimg.goo.ne.jp/user_image/40/a9/bbe35529c4b72a64ebb0947fed77ee03.png)
Step 12: Place 03 on IJ.
![](https://blogimg.goo.ne.jp/user_image/10/09/76eae448f324c29b12a9494569824eff.png)
Step 13: Divide 33 on JK by current root 4. 33/4=8 remainder 1
![](https://blogimg.goo.ne.jp/user_image/40/82/3ef56974008475ed624e2e557e920081.png)
Step 14: Place 8 on G.
![](https://blogimg.goo.ne.jp/user_image/25/90/15ccb59e9b45eb0e9c654b17031c8b7c.png)
Step 15: Place 01 on JK.
![](https://blogimg.goo.ne.jp/user_image/78/ae/fab464e9410efedeb8f3bd2c0c1d046c.png)
Step 16: Divide 38 on EF by current root 4. 38/4=9 remainder 2
![](https://blogimg.goo.ne.jp/user_image/13/77/fa5ad97d222a8a83e5bbcf13dd45b9a0.png)
Step 17: Place 9 on D as 2nd root. (Temporary root)
![](https://blogimg.goo.ne.jp/user_image/47/13/1c57a8a3759f13a5d0b2090ed4a346bc.png)
Step 18: Place 02 on EF.
![](https://blogimg.goo.ne.jp/user_image/55/51/3f556b1bc921c3b6447f984a5e732d3c.png)
Step 19: Cannot subtract 9^2=81 from 28. Temporary root 9 is excessive root.
![](https://blogimg.goo.ne.jp/user_image/68/0c/f9a4802f7e49683f3db220b6707d033f.png)
Step 20: Subtract 1 from excessive root 9. Place 8 on D.
![](https://blogimg.goo.ne.jp/user_image/0e/a5/ab308ea685b0243fee174216d61dc181.png)
Step 21: Return current root 2 on E. Place 2+4=6 on F.
![](https://blogimg.goo.ne.jp/user_image/36/7c/b8680330928bb8a585a096bb10349d2e.png)
Step 22: Place 68-2nd root^2=68-8^2=04 on FG.
![](https://blogimg.goo.ne.jp/user_image/5f/46/b3c778dd6dcf61c69e9cd2aca7af620e.png)
Step 23: 04 on FG x 1st root 4 + 01 on JK. Place 4x4+1=17 on JK.
![](https://blogimg.goo.ne.jp/user_image/39/fc/c6f5f4f6de1326257c2a8f457b6c8612.png)
Step 24: Subtract 2nd root 8^3/3 from 176 on KLM. 176-8^3/3=0
![](https://blogimg.goo.ne.jp/user_image/3c/91/d0544a1ecb5f3dfbaf14af45e8a5817d.png)
Step 25: Place 000 on KLM.
![](https://blogimg.goo.ne.jp/user_image/77/63/a1cdaad85b173b797fa72666ae6786cb.png)
Step 26: Cube root of 110592 is 48.
![](https://blogimg.goo.ne.jp/user_image/6b/0d/264a2ec2cae59462af7f161d2614b23f.png)
Final state: Answer 48
Abacus state transition. (Click to Zoom)
![](https://blogimg.goo.ne.jp/user_image/6e/51/c88ee0163fbb2ae83a31a62c7211a507.png)
It is interesting to compare with the Triple-root method.
Next article is also 1/3-multiplication table method.
Related articles:
How to solve Cube root of 1729.03 using abacus? (Feynman v.s. Abacus man)
https://blog.goo.ne.jp/ktonegaw/e/cff5d6e7ecaa07230b9cc7af10b23aed
Index: Square root and Cube root using Abacus
https://blog.goo.ne.jp/ktonegaw/e/f62fb31b6a3a0417ec5d33591249451b
Cube root 110,592 using abacus (Triple-root method 3)
https://blog.goo.ne.jp/ktonegaw/e/ca623f02e6f5fdfef4221a5c43ea1a95
Please place your mouse on the buttons and click one by one. These are blog ranking sites.
![にほんブログ村 科学ブログ 物理学へ](https://blogimg.goo.ne.jp/user_image/05/0d/5a8dd65b22fb19995a76ac142488c719.png)
![人気ブログランキングへ](https://blogimg.goo.ne.jp/user_image/61/01/1b9cd83311fdf7d7cbffa113dfea11a1.png)
![](https://blogimg.goo.ne.jp/user_image/4c/cf/d9d69c9f86b74d235382790503be08b6.png)