超音波システム研究所

超音波の新しい利用に関するブログです

超音波システム研究所

2017-07-06 20:06:06 | 超音波システム研究所2011

水素水の製造技術

超音波システム研究所は、
メガヘルツの超音波洗浄実績から
活性酸素(ヒドロキシラジカル)技術の一つとして、
オリジナル方法による
水素水の製造技術を開発しました。

 

オリジナル製造技術による
水素水の製造装置の製造販売を開始する予定です。

<製品仕様>

定格電源      100v AC
定格周波数       50/60Hz
定格消費電力     50w
水素ガス発生量    100ml/分
酸素ガス発生量    50mL/分
最大圧力       1.8気圧
給水タンク容量     300cc
給水タンク水消費量   1.6cc/毎時
給水タンク水比抵抗値  1MΩ㎝以上使用

 

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波実験 Ultrasonic experiment <超音波システム研究所 ultrasonic-labo>

2017-07-06 16:09:31 | 超音波システム研究所2011

超音波実験 Ultrasonic experiment <超音波システム研究所 ultrasonic-labo>


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波実験 Ultrasonic experiment <超音波システム研究所 ultrasonic-labo>

2017-07-06 16:08:56 | 超音波システム研究所2011

超音波を利用した部品検査技術
http://ultrasonic-labo.com/?p=1117

超音波の伝搬状態を利用した部品検査技術
http://ultrasonic-labo.com/?p=3842

超音波の伝搬状態を利用した部品検査技術
http://ultrasonic-labo.com/?p=3842

 
IMG_2959

 

オリジナル超音波システムの開発技術
http://ultrasonic-labo.com/?p=1546

超音波を利用した「振動計測技術」
http://ultrasonic-labo.com/?p=1502

表面検査対応超音波プローブを開発
http://ultrasonic-labo.com/?p=1557

 
IMG_27501

 

超音波プローブの<発振制御>技術
http://ultrasonic-labo.com/?p=1590

超音波を利用した「表面弾性波の計測技術」
http://ultrasonic-labo.com/?p=1184

 
IMG_2727

 

超音波<計測・解析>事例
http://ultrasonic-labo.com/?p=1705

超音波<計測・解析>事例
http://ultrasonic-labo.com/?p=1703

音と超音波の組み合わせによる、超音波システム
http://ultrasonic-labo.com/?p=7706

超音波による表面弾性波の制御技術
http://ultrasonic-labo.com/?p=5609

<樹脂の音響特性>を利用した超音波システム
http://ultrasonic-labo.com/?p=7563

 
IMG_2574
超音波測定解析の推奨システム
http://ultrasonic-labo.com/?p=1972

 

対象物の振動モードに合わせた、超音波制御技術
http://ultrasonic-labo.com/?p=1131

オリジナル技術リスト
http://ultrasonic-labo.com/?p=10177

IMG_2520

 
 

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

充電式超音波洗浄器(50kHz)を利用した実験動画 (超音波システム研究所 ultrasonic-labo)

2017-07-06 16:08:35 | 超音波システム研究所2011

充電式超音波洗浄器(50kHz)を利用した実験動画 (超音波システム研究所 ultrasonic-labo)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波実験 Ultrasonic experiment <超音波システム研究所 ultrasonic-labo>

2017-07-06 16:08:20 | 超音波システム研究所2011

<脱気・マイクロバブル発生液循環システム>

超音波液循環技術の説明

1)超音波専用水槽(オリジナル製造方法)を使用しています
2)水槽の設置は
  1:専用部材を使用
  2:固有振動と超音波周波数・出力の最適化を行っています
3)超音波振動子は専用部材を利用して設置しています
  (専用部材により、定在波、キャビテーション、音響流の
   利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します
   (標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています

上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)

目的の超音波状態は音圧測定解析で行います

ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします

脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します

液循環により、以下の自動対応が実現しています

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します

もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません

この濃度分布の解決がマイクロバブルの効果です

脱気・マイクロバブル発生液循環が有効な理由です

以下の動画は
複数の超音波と
複数のマイクロバブル発生液循環装置による
超音波のダイナミック制御を実現させています

https://youtu.be/_4RszRCpU88

https://youtu.be/_zvMqCa8wTI

https://youtu.be/r5gCyEtp1QE

https://youtu.be/y8ccTXJhAvw

https://youtu.be/hl1XGaP_jjE

https://youtu.be/bLS4ncbOgWM

https://youtu.be/-SiwslgL2g4

https://youtu.be/jQAc6j1vGOk

https://youtu.be/UvMlb6wxzas

https://youtu.be/W6lcI2T6mek

https://youtu.be/HeyqGSfvoBA

https://youtu.be/KsD3hYr-m68

https://youtu.be/LZY2gXPIiRE

https://youtu.be/uZiuum71pPk

https://youtu.be/kKXl9jt3SXc

https://youtu.be/x9xmRPYopC0

https://youtu.be/6ScLneXAlXY

https://youtu.be/Fe85NzP42AE

https://youtu.be/JQiSDqFHuCk

https://youtu.be/F6vMusrIhYc

https://youtu.be/S85RjXRcesI

https://youtu.be/mMolyo_9DH0

https://youtu.be/MZ08ZShQBgM

上記の技術により
目的の超音波利用に合わせた
水槽の構造設計や液循環位置(ポンプへの吸い込み口、吐出口)は
非常に重要ですが
目的・サイズ・洗浄液・・によりトレードオフの関係が発生する場合があり、
一般的な設定はありません
(具体的な数値は、コンサルティング対応しています)

適切な設定が実現すると
マイクロバブルは超音波作用によりナノバブルに分散します
ナノバブルによる超音波の安定性は、マイクロバブルに比べて大きく
制御がより簡単になります
(具体的な制御は、音圧測定・・・コンサルティング対応しています
 洗剤の使用や撹拌・・では、
 通常の洗浄とは反対の対応事例が多い傾向にあります)

超音波制御装置(制御BOX)
http://ultrasonic-labo.com/?p=4906

シャノンのジャグリング定理を応用した
「超音波制御」方法
http://ultrasonic-labo.com/?p=1753

超音波専用水槽の設計・製造技術
http://ultrasonic-labo.com/?p=1439

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波洗浄装置に関する「システム技術」 ultrasonic-labo

2017-07-06 12:15:31 | 超音波システム研究所2011

超音波洗浄装置に関する「システム技術」 ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波洗浄器による実験データ

2017-07-06 11:36:18 | 超音波システム研究所2011

超音波洗浄器による実験を紹介します



  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波<定在波を利用した制御>技術

2017-07-06 11:35:21 | 超音波システム研究所2011

超音波システム研究所は、
オリジナル技術(超音波テスター)による、
超音波<定在波を利用した制御>技術を開発しました。

 超音波水槽内の伝搬状態について、弾性波動を考慮した解析で、
 各種の振動状態(モード)を検出・検討しました。
 その結果、定在波を利用した制御により
 超音波洗浄、超音波攪拌、表面改質・・・に対して
 効率良く超音波の状態を制御する方法を開発しました。

 目的とする超音波の効果をグラフにより利用可能にしたシステム技術です。

複雑に変化する超音波の利用状態を、
 音圧や周波数だけで評価しないで
 「音色」を考慮するために、
 時系列データの自己回帰モデルにより解析して
 評価・応用しています

目的に応じた利用方法が可能です

 28kHz、40kHz、72kHzの超音波の組み合わせにより実現させます

 例1:強い(20-50kHz)のキャビテーション効果の利用

 例2:高い周波数の超音波(300kHz以上の加速度効果)の利用

 例3:定在波による
    キャビテーションと加速度の効果をミックスさせた利用

 例4:超音波攪拌・洗浄における対象物に合わせた定在波の効果を利用

 ・・・・・・・・・

参考

 http://youtu.be/eYnIuVhI16s

 http://youtu.be/2X1qX7fULY0

 http://youtu.be/s34FqtoeDBo

 http://youtu.be/zhKN6VUQuMI

 http://youtu.be/5jx4OjP1BvA

 http://youtu.be/QVqNUmz4LlM

 http://youtu.be/CfyT88-jxOY
 
 http://youtu.be/dMnN6kMG2eI

 http://youtu.be/txfnSXAaWJE

 http://youtu.be/qaoGpQWCV44

 http://youtu.be/39pFOt3Y3ac

 http://youtu.be/wNYACdlVUbA

 http://youtu.be/Ma1OrwSLotc


間接容器と定在波による音響流とキャビテーションのコントロール
http://ultrasonic-labo.com/?p=1471








  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波実験 Ultrasonic experiment <超音波システム研究所 ultrasonic-labo>

2017-07-06 07:13:47 | 超音波システム研究所2011

3.洗浄で使われる超音波

3.1超音波の利用ノウハウ
3.1.1 設置
3.1.2 マイクロバブル発生システム


3.1.3 液循環

3.2 超音波振動の伝搬現象
3.2.1 液体


3.2.2 気体
3.2.3 弾性体

3.3 キャビテーションと音響流
3.3.1 測定
3.3.2 解析
3.3.3 評価
3.3.4 具体例

 

x04

4.洗浄の問題解決テクニック( トラブルシューティング

4.1 大型部品(軸・フレーム…)の洗浄
4.2 洗浄バレルを使用した洗浄
4.3 大量の部品洗浄
4.4 洗剤・溶剤を利用した洗浄
4.5 複雑な形状の部品洗浄
4.6 その他 (線材、素材、粉末、アルミ、セラミックス…)

 

img_3543 img_3657 img_3690 img_8605 img_8615 img_8640 img_8664 20100331c

■実験動画

https://youtu.be/Avxb3JeToq8

https://youtu.be/mLue8rYX03o

https://youtu.be/qWMGPwY0-IE

https://youtu.be/ebIdtShpSow

https://youtu.be/BPIX66ALfnw

https://youtu.be/Lm6SIXspj_M

https://youtu.be/LljP9VGfrlI

https://youtu.be/mcCONsKFhoM

https://youtu.be/QrYPYx4jv0A

https://youtu.be/l4yjXlega1s

□質疑応答□

<趣旨>

製造工程にとって重要な洗浄。
機械加工の工程や表面処理の工程など、
製品への付加価値レベルの向上に伴い、
洗浄技術は大変重視されるようになりました。
しかし、現状の洗浄状況は、
IT技術・3Dプリンター・ナノテクノロジーの普及などと比べると
大きな改善・変化が起きていません。
洗浄後の汚れが再付着する状況や
洗浄物の違いによる洗浄状態のバラツキ、乾燥後のしみの発生など、
性能を低下させる原因やクレームになる事例は多く、
洗浄工程の考え方や改善方法等は、非常に重要な事項だと言えます。

本セミナーでは、
洗浄のメカニズムや基本的な知識についてわかり易く解説するとともに、
講師の長年におよぶ洗浄実験から得られた洗浄のテクニック
(水槽設計・製造、マイクロバブルの利用、
キャビテーションと音響流の最適化技術、
洗浄中の表面弾性波測定技術…)や
トラブルシューティングについて紹介します。

img_0454 img_0463 img_0016 img_0140 img_0153 img_0246 img_4479 img_4364img_4509

参考

超音波の伝播現象における「音響流」を利用する技術
http://ultrasonic-labo.com/?p=1410

<超音波のダイナミック制御技術>
http://ultrasonic-labo.com/?p=2301

超音波のダイナミック制御技術を開発
http://ultrasonic-labo.com/?p=2015

オリジナル技術(液循環)
http://ultrasonic-labo.com/?p=7658

 

img_3681 img_3680

<超音波のダイナミックシステム:液循環制御技術>
http://ultrasonic-labo.com/?p=7425

超音波水槽の新しい液循環システム
http://ultrasonic-labo.com/?p=1271

 
 

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<超音波システム研究所 ultrasonic-labo>

2017-07-06 07:09:36 | 超音波システム研究所2011

セミナー(超音波洗浄 東京:2017.7.12)

洗浄・超音波の基礎から学ぶ、超音波洗浄の活用技術とトラブル対策

超音波システム研究所は、
下記の通り超音波セミナーを行います。

タイトル
「 洗浄・超音波の基礎から学ぶ、
超音波洗浄の活用技術とトラブル対策」

講師 超音波システム研究所 代表  斉木 和幸

日時 2017年7月12日(水)10:30~16:30

主催 日刊工業新聞社
http://www.nikkan.co.jp/
受講料(税込)
37,800円(資料含む、消費税込)

会場 日刊工業新聞社 東京本社 セミナールーム
東京都中央区日本橋小網町14ー1(住生日本橋小網町ビル)
http://corp.nikkan.co.jp/uploads/seminar/file1_887.pdf

詳細 http://corp.nikkan.co.jp/seminars/view/887

img_9409

 
<プログラム>1.洗浄の基礎知識

1.1 洗浄の目的と原理

1.2 洗浄のエネルギー
1.2.1 汚れと付着力
1.2.2 洗浄と表面エネルギー

1.3 洗浄の方法
1.3.1 物理作用


1.3.2 化学作用
1.3.3 マイクロバブル

1.4 一般的な洗浄プロセス

1.5 洗浄液(洗剤、溶剤…)

1.6 洗浄効果の確認・評価方法

1.7 洗浄システムの具体例

 

20161028b

2.音圧データの測定解析に基づいた問題と改善策

2.1 液体、気体、固体が化学反応した汚れには、
キャビテーションの変化が有効

2.2 ナノレベルの精密な洗浄には、
複数の異なる超音波周波数による音響流制御が有効

2.3 再付着には、超音波シャワー・洗浄液の流れの見直しが有効

2.4 洗浄プロセスの効率改善には、
隣接する水槽間の相互作用を確認・解析することが必要

2.5 部品の隙間に入ったメッキ液の洗浄には、
洗浄物の音響特性に合わせた揺動操作が有効

2.6 超音波が大きく減衰する洗浄液を使用する場合は、
水槽の設置・治工具の工夫が必要

test00ab gr06163 gr06162 gr03313 abcde 0123
 
 
 

img_0246 img_024611 img_024500 img_024000 img_023900 img_0237 img_1819  

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする