2種類の異なる「超音波振動子」を同時に照射するシステム
http://ultrasonic-labo.com/?p=2450
上記を、目的(サイズ、価格、性能・・・)に合わせた、
オリジナルシステムとして提案・提供します。
このシステムによる具体的な応用事例
1)カーボンナノチューブ、銀粉、鉄粉、銅粉、
アルミニウム粉、・・・
のナノレベルの分散
2)各種ポリマーの水溶媒・・・への溶解・乳化
3)1MHz以上の高調波による化学反応の促進
4)各種粉末への表面処理
(超音波特有の新しい表面処理効果を実現しました。)
5)機械加工・研磨・表面処理・・・への応用・利用
(鋼材・・・への超音波(高調波)伝搬)
特に、
超音波の発振周波数に対して、
対象物への伝搬周波数(キャビテーションと音響流の効果)を
明確に制御することで、安定した超音波の効果を実現します。
今回開発した技術は
具体的な対象物の構造・材質に合わせ、
効果的な超音波(キャビテーション・音響流)伝搬状態を、
間接容器・液循環・超音波の出力制御により実現します。
特に、
音響流による、高調波の刺激により
ナノレベルの対応も十分に実現しています
金属粉末をナノサイズに分散する事例から応用発展させました。
超音波に対する
定在波やキャビテーションの制御技術をはじめ
間接容器に対する伝播制御技術・・・により
適切なキャビテーションと音響流による<乳化・分散>を行います。
これまでは、各種溶剤の効果と超音波の効果が
トレードオフの関係にあることが多かったのですが
この技術により
溶剤と超音波の効果を
適切な相互作用により相乗効果を含めて
大変効率的に利用(超音波制御)可能になりました。
オリジナルの超音波伝搬状態の測定・解析技術により、
音響流の評価・・・・多数のノウハウ・・・を確認しています。
■参考動画


超音波振動子の設置方法による、超音波の制御技術を発展させ、
非線形現象に関する、新しい応用技術を開発しました
複雑な超音波振動のダイナミック特性を
各種の関係性について解析・評価する中で、
超音波振動子や水槽の設置方法により、
超音波の非線形現象に関して、
音圧レベル、伝搬周波数の変化を、
目的に合わせて設定する技術です。





