超音波システム研究所

超音波の新しい利用に関するブログです

数学の自由性

2024-04-16 22:21:22 | 超音波システム研究所2011

数学の自由性

数学の自由性

高木貞治

実用的 ::同型:: 徹底的

実用的 ::同型:: 徹底的

実用的 ::同型:: 徹底的

実用的 ::同型:: 徹底的

実用的 ::同型:: 徹底的

実用的 ::同型:: 徹底的


超音波システム研究所
 ホームページ  http://ultrasonic-labo.com/
 
超音波の代数モデルによる制御技術
 http://ultrasonic-labo.com/?p=1311
 
通信の数学的理論  http://ultrasonic-labo.com/?p=1350
音色と超音波   http://ultrasonic-labo.com/?p=1082
モノイドの圏     http://ultrasonic-labo.com/?p=1311
物の動きを読む   http://ultrasonic-labo.com/?p=1074

小平邦彦の数学

超音波技術を発展させるために
1)数学の重要性を理解する
2)数学への取り組みを実施する
3)数学を応用した新しい超音波の利用を進める
と言うことが必要ではないかと考えています

実在する数学的現象・・・
「現代の数学は形式主義の影響を強く受けていて、数学は公理的に構成された論証の体系であると言う点が強調されるが、筆者の見るところでは、数学は、物理学が物理的現象を記述しているのと同様な意味で、実在する数学的現象を記述しているのであって、数学を理解するにはその数学的現象の感覚的イメージを明確に把握することが大切である」小平邦彦ー複素解析(岩波基礎数学選書)より。

「近年ユークリッド平面幾何は数学の初等教育からほとんど追放されてしまったが、それによって失われたものは普通に考えられているよりもはるかに大きいのではないかと思う。」

「昔われわれは平面幾何で論理を学んだんですが、幾何でないと論理を教えてもだめなんじゃないかしら。代数なんか材料にして論理を教えようと思っても材料があんまり単純でしょう。」

「わからない証明を繰り返しノートに写してしまうと、自然にわかってわかってくるようである。
現在の数学の初等・中等教育ではまずわからせることが大切で、わからない証明を丸暗記させるなどもっての外、ということになっているが、果たしてそうか疑問である」


 

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<超音波照射技術>NO.27

2024-04-16 19:12:51 | 超音波システム研究所2011

<超音波照射技術>NO.27

超音波振動子の設置方法による
超音波(定在波)の制御例です。
超音波専用水槽とマイクロバブルに関する最適化を行っています。

 超音波振動子の周波数:40kHz  超音波出力:300W(仕様)

<<超音波システム研究所>>

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

新しい超音波伝搬用具を利用した超音波制御実験(非線形共振現象の制御)

2024-04-16 19:12:49 | 超音波システム研究所2011
新しい超音波伝搬用具を利用した超音波制御実験(非線形共振現象の制御)





  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波プローブの伝搬特性テスト(超音波システム研究所)

2024-04-16 19:00:32 | 超音波システム研究所2011
超音波プローブの伝搬特性テスト(超音波システム研究所)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波(キャビテーションと音響流)のダイナミック制御 ultrasonic-labo

2024-04-16 18:56:49 | 超音波システム研究所2011

超音波(キャビテーションと音響流)のダイナミック制御 ultrasonic-labo

超音波システム研究所は、
超音波の制御を効率行うことができる
<<脱気マイクロバブル発生液循環装置>>の製造・開発方法・・を
コンサルティング対応しています。

<<脱気マイクロバブル(ファインバブル)発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、20μ以下のマイクロバブルが発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。

5)上記の脱気マイクロバブル発生液循環装置に対して
超音波を照射すると
マイクロバブルを超音波が分散・粉砕して
マイクロバブルの測定を行うと
ナノバブルの分布量がマイクロバブルの分布量より多くなります
上記の状態が、超音波を安定して制御可能にした状態です。


超音波液循環技術の説明

1)超音波専用水槽(オリジナル製造方法)を使用しています。
  (材質は、樹脂・ステンレス・ガラス・・対応可能です)
2)水槽の設置は
  1:専用部材を使用
  2:固有振動と超音波周波数・出力の最適化を行っています。
  (水槽の音響特性に合わせた対応を実施します)
3)超音波振動子は専用部材を利用して設置しています
  (専用部材により、定在波、キャビテーション、音響流の
   利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します。
   (標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています。

上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します。

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します。

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
 超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)

目的の超音波状態確認は音圧測定解析(超音波テスター)で行います。


ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします。

マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します。

液循環により、以下の自動対応が実現しています。

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します。

適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます。

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を取り入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります。
(説明としては、キャビテーション核の必要性が空気を入れる理由です
 液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
 同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません。

この濃度分布の解決がマイクロバブルの効果です。

脱気・マイクロバブル発生液循環が有効な理由です。

注:
オリジナル装置(超音波測定解析システム:超音波テスター)による
音圧測定解析を行い
効果の確認を行っています。


上記の液循環状態に対して
超音波プローブによるメガヘルツの超音波発振制御を行うことで
超音波の非線形現象が幅広い周波数帯で発生するとともに
ダイナミックな超音波の変化を実現します。

気体の流量・流速分布・・・を適切に設定することで
目的に合わせた、非線形現象を発生させることができます。


<脱気・マイクロバブル発生液循環システム>による非線形制御技術

<<キャビテーションのコントロール>>
超音波システム研究所は、
 目的に合わせた効果的な超音波のダイナミック制御を実現する、
 <脱気・マイクロバブル発生液循環システム>に関して
 メガヘルツの超音波発振制御とのくみあわせにより
 超音波の非線形現象をコントロールする技術を開発しました。

<音響流とキャビテーションのバランスを最適化する>
1)洗浄液が淀まない洗浄水槽を使用する
2)強度について、特別に弱い部分のない洗浄水槽を使用する
3)洗浄液の分布を均一にする(Do濃度、液温、流速 等)
4)振動子の上面の洗浄液の流れを調節する
 (流量・流速・バラツキをコントロールする)
5)超音波の周波数と出力にあわせた液循環を行う
6)機械設計としての洗浄水槽の強度は超音波周波数に対して設定する
7)洗浄水槽の製造方法を明確にして、超音波の水槽による減衰レベルを設定する
8)流体に対する洗浄水槽の特性を明確にする(例 コーナー部の設計)
9)超音波の周波数・出力に対する洗浄水槽の特性を明確にする
(振動子・振動板の位置と水槽の関係を調整する 
 洗浄水槽の超音波伝播特性を明確にする)
10)洗浄システムとしての制御構造などとの最適化を行う

以上のパラメータを念頭に超音波洗浄を検討する(あるいは、現状の洗浄を見直す)

コメント
音響流とキャビテーションは相反する現象だと考えています
しかし、どちらかをなくすことは大変難しいため
バランスを調整し、最適化することが重要だと考えています




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波プローブの発振制御システム(超音波システム研究所)

2024-04-16 18:21:41 | 超音波システム研究所2011
超音波プローブの発振制御システム(超音波システム研究所)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

600MHz以上のメガヘルツ超音波発振制御プローブを測定・解析・評価する実験(超音波システム研究所)

2024-04-16 18:01:05 | 超音波システム研究所2011
600MHz以上のメガヘルツ超音波発振制御プローブを測定・解析・評価する実験(超音波システム研究所)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波プローブの伝搬特性を測定・解析・評価する実験ーー超音波の送受信テストーー(超音波システム研究所)

2024-04-16 17:52:03 | 超音波システム研究所2011
超音波プローブの伝搬特性を測定・解析・評価する実験ーー超音波の送受信テストーー(超音波システム研究所)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

オリジナル超音波実験:実験の公開(超音波システム研究所)

2024-04-16 17:47:02 | 超音波システム研究所2011
オリジナル超音波実験:実験の公開(超音波システム研究所)




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

表面残留応力均一化(改質)

2024-04-16 17:43:37 | 超音波システム研究所2011

表面残留応力均一化(改質

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする