シャノンのジャグリング定理を応用した「超音波制御」方法
各種データの時系列変化の様子を解析・評価して、
時間で移動するボールのジャグリング状態に相当する
超音波伝搬現象の「サイクル」と、「影響範囲」を見つけます
この関係性からボールN個のジャグリング状態を設定して制御を行うと、
自然なシステムの状態に適した制御となり、効率の高い超音波システムとなります
<< 超音波のジャグリング制御 >>
制御できると超音波システムは 大変便利な道具(装置)になります
超音波照射による現象を 安定して効率よく利用するためには
超音波発振機や振動子以外の条件(注)に関する 検討や開発も必要です
注:水槽、洗浄液、装置の固定方法、治工具、液循環・・・
水槽や液循環・・・の影響も大きいのですが
現在使用中の超音波を効率用利用するための
単純ですが大きな改善が可能な
アイデアと方法を紹介します
( 具体例や実績は多数あります
20cc-1800リットルまで対応実績があります )
** 超音波システムの制御 **
この制御は簡単で、非常に効率が高いので是非利用してください
省エネルギーにもなります、広く普及させたいと考えています 特許申請は行いません
(インターネットで公開し類似の特許が登録されないようにしています)
詳細については「 超音波システム研究所 」にお問い合わせください
単純ですが、個別の要因(水槽、伝搬対象物、・・)により適切な設定が必要です
新しい超音波システムの制御
<< シャノンのジャグリング定理の応用 >>
注:JUGGLING THEOREM proposed by Claude E. Shannon
of the Massachusetts Institute of Technology
is schematically represented for the three-ball cascade.
( http://www2.bc.edu/~lewbel/jugweb/science-1.html より)
シャノンのジャグリング定理
( F + D ) * H = ( V + D ) * N
F : ボールの滞空時間(Flight time)
D : 手中にある時間(Dwelling time)
H : 手の数(Hands)
V : 手が空っぽの時間(Vacant time)
N : ボールの数(Number of balls)
<< 応用 >>
F : 超音波の発振・出力時間
D : 循環ポンプの運転時間
H : 基本サイクル(キャビテーション・加速度のピークの発生する)
V : 脱気装置の運転時間
N : 超音波(発振)周波数の異なる振動子の数
説明
各種データの時系列変化の様子を解析(応答特性・・・)して、
時間で移動するボールのジャグリング状態に相当する
サイクルと影響範囲を見つけます
この関係性からボールN個のジャグリング状態を設定して制御を行うと、
自然なシステムの状態に適した制御となり、
効率の高い超音波システムとなります
F・D・Vの関係は時間の経過とともにトレードオフの関係になります、
そのために各種の運転として他の条件を停止させた状態で
運転する方法が必要になります
これまでにも、結果としては適切と思える状態が発生することがありましたが
数時間、数日、数ヶ月後には適切でなくなり、
再調整することがありました
このような経験の中から適切なモデルを検討していましたが、
ジャグリングモデルは大変良く適合するとともに、
高い効率と安定性を示しました
超音波の目的(キャビテーションの効果、加速度の効果、 等)に対して、
装置の運転時間の調整で対応(最適化)することが可能です
但し、一般的な時間を提示できないのはシステムの系として
水槽やポンプの構造による影響が大きいため、
そこに合わせる(音響特性を考慮した最適化の)必要があるためです
参考動画
http://youtu.be/z9U_zAqYbME http://youtu.be/4qllXYFuqBM
http://youtu.be/OVWyXfQY2Uk http://youtu.be/83dDoHXLu5Y
http://youtu.be/az0kxOEKVHE http://youtu.be/WGXBGfy3W1w
http://youtu.be/h6YM0HD7W8o http://youtu.be/lyjmlQLUP48
参考として、単純な応用例
300リットルの水槽で30リットル毎分の循環ポンプと脱気装置の場合
超音波1 ——
超音波2 —— ——
脱気装置 — — —
循環ポンプ — — — ....
超音波出力:2分 100-200ワット、 脱気装置 1分、 循環ポンプ 1分
ポイント
システムを「時間で移動するボールのジャグリング状態」として
捉えることが重要です
トレードオフの関係にあるパラメータを
適切にバランス運転することを可能にします
通信の理論を考えたシャノンが
ジャグリングの理論を考えた理由もそこにあるように思います
各種の運転・停止時間の設定により
キャビテーションと加速度の効果を 調整することが可能です
オリジナルの音圧測定解析装置:超音波テスターにより
応答特性の確認を行い、提案・実施しています
特に、複数の同じタイプの超音波振動子を
一つの水槽に入れて利用している場合
この制御を行うことで 洗浄・攪拌・改質・・・・の効果を大きく改善できます
現状の超音波装置の対策としては 最も効果的で実用的です
但し、装置の振動系の測定解析を行う必要があります
装置の振動系の問題がある場合には 測定解析に時間がかかります
興味のある方はメールでお問い合わせください
<ダイナミック特性を利用した制御>
http://ultrasonic-labo.com/?p=1299
超音波伝搬状態の最適化技術
http://ultrasonic-labo.com/?p=1010
物の動きを読む数理(音圧・液温・Do濃度)
http://ultrasonic-labo.com/?p=1074
インフォメーション http://ultrasonic-labo.com/blog
参考
1)超音波洗浄器(基礎実験・確認)
超音波洗浄器の利用技術
http://ultrasonic-labo.com/?p=1318
超音波洗浄器の利用技術 No.2
http://ultrasonic-labo.com/?p=1060
超音波洗浄器(42kHz)による<メガヘルツの超音波洗浄>技術を開発
http://ultrasonic-labo.com/?p=1879
2)超音波利用(応用技術・ノウハウ)
超音波振動子の設置方法による、超音波制御技術
http://ultrasonic-labo.com/?p=1487
推奨する「超音波(発振機、振動子)」
http://ultrasonic-labo.com/?p=1798
超音波専用水槽の設計・製造技術を開発
http://ultrasonic-labo.com/?p=1439
超音波のダイナミック制御技術を開発
http://ultrasonic-labo.com/?p=2015
多変量自己回帰モデルによるフィードバック解析技術を応用した、
「超音波の伝搬状態を測定・解析・評価する技術」を利用して
超音波利用に関するコンサルティング対応を行っています。
超音波テスターを利用したこれまでの
計測・解析・結果(注)を時系列に整理することで
目的に適した超音波の状態を示す
新しい評価基準(パラメータ)を設定・確認します。
注:
非線形特性(音響流のダイナミック特性)
応答特性
ゆらぎの特性
相互作用による影響
統計数理の考え方を参考に
対象物の音響特性・表面弾性波を考慮した
オリジナル測定・解析手法を開発することで
振動現象に関する、詳細な各種効果の関係性について
新しい理解を深めています。
その結果、
超音波の伝搬状態と対象物の表面について
新しい非線形パラメータが大変有効である事例による
実績が増えています。
特に、洗浄・加工・表面処理効果に関する評価事例・・
良好な確認に基づいた、制御・改善・・・が実現します。
<統計的な考え方について>
統計数理には、抽象的な性格と具体的な性格の二面があり、
具体的なものとの接触を通じて
抽象的な考えあるいは方法が発展させられていく、
これが統計数理の特質である
<< 超音波の音圧測定・解析 >>
1)時系列データに関して、
多変量自己回帰モデルによるフィードバック解析により
測定データの統計的な性質(超音波の安定性・変化)について
解析評価します
2)超音波発振による、発振部が発振による影響を
インパルス応答特性・自己相関の解析により
対象物の表面状態・・に関して
超音波振動現象の応答特性として解析評価します
3)発振と対象物(洗浄物、洗浄液、水槽・・)の相互作用を
パワー寄与率の解析により評価します
4)超音波の利用(洗浄・加工・攪拌・・)に関して
超音波効果の主要因である対象物(表面弾性波の伝搬)
あるいは対象液に伝搬する超音波の
非線形(バイスペクトル解析結果)現象により
超音波のダイナミック特性を解析評価します
この解析方法は、
複雑な超音波振動のダイナミック特性を
時系列データの解析手法により、
超音波の測定データに適応させる
これまでの経験と実績に基づいて実現しています。
注:解析には下記ツールを利用します
注:OML(Open Market License)
https://www.ism.ac.jp/ismlib/jpn/ismlib/license.html
注:TIMSAC(TIMe Series Analysis and Control program)
https://jasp.ism.ac.jp/ism/timsac/
注:「R」フリーな統計処理言語かつ環境
https://cran.ism.ac.jp/
ナノレベルの攪拌・乳化・分散・粉砕技術--
超音波処理1::「粉末のナノ化」
超音波処理2::「液体の均一化・流動性改善」
超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用した
「超音波による液体の均一化・流動性改善技術」を開発しました。
この技術は
表面検査による間接容器、超音波水槽、その他事項具・・の
超音波伝搬特徴(解析結果)を利用(評価)して
超音波(キャビテーション・音響流)を制御します。
さらに、
具体的な対象物の構造・材質・音響特性に合わせ、
効果的な超音波(キャビテーション・音響流)伝搬状態を、
ガラス容器・超音波・対象物・・の相互作用に合わせて、
超音波の発振制御により実現します。
特に、
音響流制御による、高調波のダイナミック特性により
ナノレベルの対応が実現しています
金属粉末をナノサイズに分散する事例から応用発展させました。
超音波に対する
定在波やキャビテーションの制御技術をはじめ
間接容器に対する伝播制御技術・・・により
適切なキャビテーションと音響流による攪拌を行います。
これまでは、各種溶剤の効果と超音波の効果が
トレードオフの関係にあることが多かったのですが
この技術により
溶剤と超音波の効果を
適切な相互作用により相乗効果を含めて
大変効率的に利用(超音波制御)可能になりました。
オリジナルの超音波伝搬状態の測定・解析技術により、
音響流の評価・・・・多数のノウハウ・・・を確認しています。