超音波システム研究所

超音波の新しい利用に関するブログです

超音波システム研究所

2019-10-29 18:48:48 | 超音波システム研究所2011
反秀才について

熟慮断行では足りない。熟慮、祈念、放下、断行が必要だ」伊庭貞剛

柘植俊一のことば
「訃報:柘植俊一さん71歳=筑波大名誉教授、航空宇宙工学専攻(2003年06月22日) 」
「柘植俊一さん71歳(つげ・しゅんいち=筑波大名誉教授、航空宇宙工学専攻)21日、心筋こうそくのため死去。(省略)
 乱流が生む渦の理論的解明で知られ、著書に「反秀才論」などがある。少年少女への柔道指導にも力を注いだ。」
昭和7年(1932年)4月1日生まれの東京人である。
昭和29年東大工学部電気工学科卒業。
昭和34年大学院数物系研究科航空学専攻終了。
昭和35年防衛大助教授。
昭和44年NASAエイムス研究所上級研究員。
昭和54年筑波大学構造工学系教授。

秀才の方法

「『既存の最先端理論』や『既存の最先端研究』の成果を捜し出して、
それをもとに自分の問題に当てはめようとする」だろう。
そして、こういった「ひな形(=教科書的事例)」がない場合には、この方法は決してうまく行かない。

反秀才の方法




自分で実験してみた経験から出る、
 「反秀才」の神憑かり的な直観力が物を言うのだろう。

日本の反秀才の方法(石井孝雄(日本オイルシールNOK総合技術研究所)

1)本を読むことではなく、
 実験装置を作ることでもなく、シールにたずさわったことのある人を求めて
 内外を問わず接近し、現場の職人たち(頭でなく、
 いわば皮膚感覚でオイルシートを知っている人たち)の言に耳を傾け、それを収録してまわった。

2)これら多くの真実らしき断片を見据えて、
 その奥にある統一的メカニズムを描像することだった。

基本となった考え方
 「『要はまじめに働けばよいのだ。
 日本人だって煎じつめるとそれだけではないか。
 そして環境さえ醸成すればどんな人種でも特に貧しい人なら必ず、まじめに働くのだ。』
 という彼の発見した法則は普遍的である。

秀才と反秀才の違いは
 「ロゴス(論理)」と「パトス(情念)」で見極められると柘植は言う。
 つまり、秀才に共通するもの「知能」の高さであり、
 反秀才に共通するものが「情熱」の大きさであるというのである。

われわれ理論研究においても、歴史は、大学や国立の研究所以外のごく民間人が大貢献してきたのである。
フェルマーの定理のフェルマーは法律家であった。
ニュートンですら一地方公務員であるときに素晴らしい業績を残している。
ルベーグは高校の先生、グリーンの定理のグリーンは学外の独学者であった。
もちろん、アインシュタインは特許局員にすぎなかった。
フェルマーの定理を証明したワイルス博士もその証明の時には、一種の在宅研究者であった。

こういう人々は非常に多い。
確かに教育は大学、大学院で受けることもあるが、
基礎研究は結局その人個人個人の『情熱』に依存しているからである。

この意味では、理論研究であったとしても、
基本的には、実験研究や開発と同じで、私設研究所、
個人研究所が非常に大きな役割を果している、ということである。











 
 

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<ステンレス容器>を利用した超音波 no.73

2019-10-29 18:46:38 | 超音波システム研究所2011

<ステンレス容器>を利用した超音波 no.73



現在、この技術( Ultrasonic Cavitation Control )を発展させて
  表面改質、洗浄、化学反応促進、乳化分散・・・
  の適応技術として提案させていただいています
<<超音波システム研究所>>


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<超音波システム研究所 ultrasonic-labo>

2019-10-29 17:28:40 | 超音波システム研究所2011

 

20111103c

■参考:技術の背景

(サイバネティクスはいかにしてうまれたか

ノーバート・ウィナー著 みすず書房 1956年 より)

・・・・・・

理想的には、単振動とは遠い過去から遠い未来まで時間的に

 不変に続いている運動である。

ある意味でそれは永遠の姿の下に存在する。

音を発したり、止めたりすることは、

必然的にその振動数成分を変えることになる。

この変化は、小さいかもしれないが、 全く実在のものである。

有限時間の間だけ継続する音符はある帯域にわたる多くの

 単振動に分解することができる。

それらの単振動のどれか一つだけが存在するとみる事はできない。

時間的に精密であることは

 音の高さがいくらかあいまいであることを意味し、

 また音の高さを精密にすれば必然的に時間的な区切りがつかなくなる。

・・・・・・・

・・・・・・・

こうして、サイバネティクスの立場から見れば、

世界は一種の有機体であり、そのある面を変化させるためには

あらゆる面の同一性をすっかり破ってしまわなければならない

というほどぴっちり結合されたものでもなければ、

任意の一つのことが他のどんなこととも同じくらいやすやすと

起こるというほどゆるく結ばれたものでもない。  ・・・・・・・

20120205a

■参考:動画

http://youtu.be/LYikRjud0LM

http://youtu.be/2X1qX7fULY0

http://youtu.be/5BDIQum7Bsw

http://youtu.be/Y_9ysCuxDrU

http://youtu.be/LFOVBMCgwJs

http://youtu.be/MJgDqEGEu00

http://youtu.be/u3wai4L7Zj4

これは、新しい超音波解析技術であり、

超音波のダイナミック特性による一般的な効果を含め

新素材の開発、攪拌、分散、洗浄、化学反応実験・・・

に、各種操作方法として<利用・応用>できると考えています。

特に、ナノレベルの分散・攪拌への応用により

付加価値の高い技術に発展しています。

http://youtu.be/XTQG94DWEkI  

http://youtu.be/-_9ynkl2f6s

http://youtu.be/tTVrbNeY5ao  

http://youtu.be/jnrg-8X44pc

 

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究所

2019-10-29 17:27:11 | 超音波システム研究所2011
超音波技術(液循環)の概要

1)超音波専用水槽(オリジナル製造方法)を使用しています

2)水槽の設置は
  1:専用部材を使用
  2:固有振動と超音波周波数・出力の最適化を行っています

3)水槽内に2台の超音波振動子を設置しています

4)脱気・マイクロバブル発生装置を0.5時間運転した状態です
   (溶存酸素濃度は5-6mg/l)

5)水槽と超音波振動子は表面改質を行っています

6)超音波振動子(仕様 28,72kHz 300W)を使用しています



http://youtu.be/toFRWhImJhE

http://youtu.be/RO7dxC7N_Fk

http://youtu.be/RdNIz0aLvJM

http://youtu.be/EyJ2i23j-pY









上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します。

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します。

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
 超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)

目的の超音波状態確認は音圧測定解析(超音波テスター)で行います。


ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします。

脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します。

液循環により、以下の自動対応が実現しています。

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します。

もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます。

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります。
(説明としては、キャビテーション核の必要性が空気を入れる理由です
 液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
 同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません。

この濃度分布の解決がマイクロバブルの効果です。

脱気・マイクロバブル発生液循環が有効な理由です。

注:
オリジナル装置(超音波測定解析システム:超音波テスター)による
音圧測定解析を行い
効果の確認を行っています。


上記の液循環状態に対して
ポンプから空気(気体)をバブリングすることで
水槽底面の表面弾性波の効果を利用して
マイクロバブルの発生効率が高くなるとともに
ダイナミックな超音波の変化を実現します。

気体の流量・流速分布・・・を適切に設定することで
目的に合わせた、非線形現象を発生させることができます。


以下の動画は
超音波のダイナミック制御を実現させています

<<参考動画>>


https://youtu.be/8r9mLpX6zKI

https://youtu.be/sqWSP-eKs4s

https://youtu.be/RNqiJwr1a8E

https://youtu.be/w7TOWZsi_pw

https://youtu.be/xCh4MBgVXK4

上記の技術により
目的の超音波利用に合わせた
水槽の構造設計や液循環位置(ポンプへの吸い込み口、吐出口)は
非常に重要ですが
目的・サイズ・洗浄液・・によりトレードオフの関係が発生する場合があり、
一般的な設定はありません
(具体的な数値は、コンサルティング対応しています)

適切な設定が実現すると
マイクロバブルは超音波作用によりナノバブルに分散します
ナノバブルによる超音波の安定性は、マイクロバブルに比べて大きく
非線形現象の制御がより簡単になります
(具体的な制御は、音圧測定・・・コンサルティング対応しています
 洗剤の使用や撹拌・・では、
 通常の洗浄とは反対の設定を行う成功事例が多い傾向にあります)










<超音波のダイナミック制御技術>
http://ultrasonic-labo.com/?p=2301

超音波のダイナミック制御技術を開発
http://ultrasonic-labo.com/?p=2015

オリジナル技術(液循環)
http://ultrasonic-labo.com/?p=7658

<超音波のダイナミックシステム:液循環制御技術>
http://ultrasonic-labo.com/?p=7425

超音波水槽の新しい液循環システム
http://ultrasonic-labo.com/?p=1271

現状の超音波装置を改善する方法
http://ultrasonic-labo.com/?p=1323

超音波制御装置(制御BOX)
http://ultrasonic-labo.com/?p=4906

シャノンのジャグリング定理を応用した
「超音波制御」方法
http://ultrasonic-labo.com/?p=1753

小型ポンプによる「音響流の制御技術」
http://ultrasonic-labo.com/?p=7500










 

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究所

2019-10-29 16:48:58 | 超音波システム研究所2011

 

音圧測定装置(超音波テスター)の標準タイプ
http://ultrasonic-labo.com/?p=1722

音圧測定装置(超音波テスター)の特別タイプ
http://ultrasonic-labo.com/?p=1736

20150827gg

新しい超音波(測定・解析・制御)技術
http://ultrasonic-labo.com/?p=1454

20150827hh

複数の超音波プローブを利用した「測定・解析・評価」技術
http://ultrasonic-labo.com/?p=3755

超音波プローブの<発振制御>技術
http://ultrasonic-labo.com/?p=1590

201606071

超音波の伝搬状態を利用した部品検査技術
http://ultrasonic-labo.com/?p=3842

超音波<計測・解析>事例
http://ultrasonic-labo.com/?p=1705

IMG_9323

IMG_1651

IMG_1465

201606072

 

IMG_1656

IMG_1648

IMG_1480 IMG_9574

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

セミナー(超音波洗浄 京都:2019.11.6)

2019-10-29 09:42:53 | 超音波システム研究所2011

セミナー(超音波洗浄 京都:2019.11.6)

超音波システム研究所は、
下記の通り超音波セミナーを行います。

 

タイトル
「洗浄の本質理解と超音波洗浄の実用知識・ノウハウ」

日時 2019年11月6日(水) 10:30-16:30

会場 京都・京都市下京区 京都リサーチパーク 1号館 4F A会議室

受講料 49,500円

主催 サイエンス&テクノロジー株式会社

詳細 https://www.science-t.com/seminar/F191106.html

 
<開催主旨>

 

■はじめに
これまでの洗浄に関するコンサルティング経験から
洗浄に対する取り組みは洗浄原理の理解を深めること以上に
新素材・ 新加工・製造技術の進歩により従来の経験や直観では
対応できなくなっています。
基本的な洗浄を見直す機会として
あるいは洗浄の基本を理解するセミナーとして
物の表面を測定する簡易デモンストレーションを行いながら
洗浄の複雑さと重要(ノウハウ)事項を説明したいと考えます。
特に、医療用、真空用、半導体用で洗浄が不十分だった
パイプ、チューブ、ホース・・の内部洗浄について
メガヘルツの超音波発振制御技術を利用した精密洗浄方法を説明します。

特に、このセミナーで、以下の項目を詳しく説明します
1)なぜ、ファインバブルが有効なのか?
2)ファインバブルをどのように発生するのか?
3)どのように超音波洗浄機で利用するのか?

 
■講演プログラム
1.洗浄の基礎知識
1.1 洗浄の目的と原理
1.2 洗浄のエネルギー
1.2.1 汚れと付着力
1.2.2 洗浄と表面エネルギー
1.3 洗浄の方法
1.3.1 物理作用
1.3.2 化学作用
1.3.3 マイクロバブル
1.4 一般的な洗浄プロセス
1.5 洗浄液(洗剤、溶剤…)
1.6 洗浄効果の確認・評価方法
1.7 洗浄システムの具体例

 

2.超音波を利用した表面観察・測定(デモンストレーション)
サンプル部品の表面を伝搬する超音波を観察・測定します
観察・測定しながら、洗浄するための各種事項を説明します

 

 

3.洗浄で使われる超音波
3.1 精密洗浄に超音波が利用される理由
超音波を効果的な洗浄にするための使用ノウハウ
3.1.1 設置
3.1.2 マイクロバブル発生システム
3.1.3 液循環
3.2 洗浄物・洗浄液の特性に合わせた超音波振動現象
3.2.1 液体
3.2.2 気体
3.2.3 弾性体
3.3 超音波洗浄の本質(非線形現象としての音響流)
3.3.1 超音波測定
3.3.2 音圧データの解析

4.洗浄事例の説明
4.1 洗浄装置(洗浄システム)
4.2 洗浄物・汚れの分類
4.3 洗浄事例
4.4 質疑応答を含めた対応

 
 
 

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究に関する動画・スライド

2019-10-29 09:02:06 | 超音波システム研究所2011

超音波システム研究に関する動画・スライド


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波美顔器(1MHz)を利用した実験

2019-10-28 19:14:31 | 超音波システム研究所2011

超音波美顔器(1MHz)を利用した実験


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<<超音波の音圧測定・解析>>

2019-10-28 11:45:32 | 超音波システム研究所2011

 

<<超音波の音圧測定・解析>>

1)多変量自己回帰モデルによる
フィードバック解析により
超音波伝搬状態の安定性・変化について解析評価します

2)インパルス応答特性・自己相関の解析により
対象物の表面状態・・に関する解析評価を行います

3)パワー寄与率の解析により
超音波(周波数・出力)、形状、材質、測定条件・・
データの最適化に関する解析評価を行います

4)その他(表面弾性波の伝搬)の
非線形(バイスペクトル)解析により
対象物の振動モードに関する
ダイナミック特性の解析評価を行います

この解析方法は、
複雑な超音波振動のダイナミック特性を
時系列データの解析手法により、
超音波の測定データに適応させることで実現しています。

参考動画

https://youtu.be/o3dCZLhhR8I

https://youtu.be/ABVE1LmZRx0

https://youtu.be/HT5Wci29zl4

https://youtu.be/-AwumUFSvpE

https://youtu.be/JaSmaWQDqlc

https://youtu.be/oBMF3UlxSgo

https://youtu.be/cBAq9kPoKWM

https://youtu.be/arzfTXKLQfk

https://youtu.be/_rD6N2qb42U

https://youtu.be/sLmiJN6bfao

https://youtu.be/loYEM_LCAfM

https://youtu.be/n5-csVbr_-M

https://youtu.be/6YFFO_RnQxc

https://youtu.be/1JJ9LyRLdX8

https://youtu.be/BPHqugShEBQ

https://youtu.be/pH72dldRVdU

https://youtu.be/8z9t4tb_G4k

https://youtu.be/l9Pd4rGlDgk

https://youtu.be/QjAEzWk7tP4

https://youtu.be/8grwGw8kmhw

https://youtu.be/xG0zfVnxyI4

https://youtu.be/RuXHxvTl1qk

https://youtu.be/gokDMrXouds

https://youtu.be/05KzyECICDQ

https://youtu.be/oBMF3UlxSgo

https://youtu.be/5OdClMjBKPA

https://youtu.be/rv3MeXU0rjw

https://youtu.be/ZlSx19lB3Ts

https://youtu.be/MxMl9IlTrYQ

https://youtu.be/MMADjNW7nu4

https://youtu.be/0LWegoKTgmo

https://youtu.be/8gfNCSt5uVg

https://youtu.be/xX25K7PC-NY

https://youtu.be/CyJvuD4_lnU

https://youtu.be/H1wzS8832tA

https://youtu.be/SJZLof6Z1Cs

https://youtu.be/TifkvjusG8g

<<< 超音波の論理モデル >>>

代数モデル
http://ultrasonic-labo.com/?p=1311

数学的理論
http://ultrasonic-labo.com/?p=1350

音色と超音波
http://ultrasonic-labo.com/?p=1082

物の動きを読む
http://ultrasonic-labo.com/?p=1074

超音波の洗浄・攪拌・加工に関する「論理モデル」
http://ultrasonic-labo.com/?p=3963

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究所

2019-10-28 11:14:49 | 超音波システム研究所2011
超音波システム研究所は、
超音波技術に関するオリジナル技術リストを公開しました。

IMG_9788

<<音圧測定・解析技術>>

超音波測定解析の推奨システムを製造販売
http://ultrasonic-labo.com/?p=1972

IMG_3565IMG_3551

超音波洗浄機の音圧測定システム(超音波テスター)
http://ultrasonic-labo.com/?p=1609

IMG_0131oo

超音波「音圧測定装置(超音波テスター)」の標準タイプ
http://ultrasonic-labo.com/?p=1722

20131214-0012_14

超音波「音圧測定装置(超音波テスター)」の特別タイプ
http://ultrasonic-labo.com/?p=1736

IMG_6207

超音波計測装置(超音波テスター)を利用した測定事例
http://ultrasonic-labo.com/?p=1685

超音波発振・計測・解析システム(超音波テスター)
http://ultrasonic-labo.com/?p=7662

IMG_1869

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする