![](https://blogimg.goo.ne.jp/user_image/59/ec/7c85c6094668c35b2b615ca168d26727.png)
[Set 54,756 on Mr. Square root]
[Japanese]
We will continue from where we ended in the last article, the article shows actual solutions to calculate Square root using abacus. Today's example is simple - basic Double-root method, root is 3-digits case. Please check the Theory page for your reference.
Square root methods: Double-root method, Double-root alternative method, half-multiplication table method, half-multiplication table alternative method, multiplication-subtraction method, constant number method, etc.
Abacus steps to solve Square root of 54,756 (Answer is 234)
"1st group number" is the left most numbers in the 2-digits groups of the given number for square root calculation. Number of groups is the number of digits of the Square root.
54,756 -> (05|47|56) : 5 is the 1st group number. The root digits is 3.
![](https://blogimg.goo.ne.jp/user_image/12/17/41fe556c07e93fb4626b4d7b6402eb08.png)
Step 1: Set 54756. 1st group is 5.
![](https://blogimg.goo.ne.jp/user_image/7e/59/51a0a74f4869cc3e8aeca18b939d5f3f.png)
Step 2: Square number equal to or smaller than 5 is 4=2^2. 2 is the 1st root. Place 4 which is 2x of 1st root 2. This 4 is double root.
![](https://blogimg.goo.ne.jp/user_image/26/4b/4ca7aa5b7adf8033db861ac559018d85.png)
Step 3: Subtract 2^2 from the 1st group 5. 5-4=1 : -a^2
![](https://blogimg.goo.ne.jp/user_image/3e/62/9265e42695e8dff5746237e84a9a092d.png)
Step 4: Focus on 14 and divide it by double root 4.
![](https://blogimg.goo.ne.jp/user_image/70/8a/a0045f33f0fae991383c2b446571473a.png)
Step 5: Answer=3 and this is 2nd root. Set second root 3 on E.
![](https://blogimg.goo.ne.jp/user_image/64/49/f086e65459a570700932f229924d1e54.png)
Step 6: Subtract double root 4 x 2nd root 3 from 14. 14-4x3=02.
![](https://blogimg.goo.ne.jp/user_image/53/7a/7507bb44de80cfdef229006b29d93584.png)
Step 7: Focus on 27.
![](https://blogimg.goo.ne.jp/user_image/40/55/3907e54668eb1af4a78befd01e94c7d1.png)
Step 8: Subtract (2nd root 3)^2 from 2nd group 27. 27-3^2=18
![](https://blogimg.goo.ne.jp/user_image/13/bd/1e64922cbd50c6104a43c9e6d2f1bf5e.png)
Step 9: Add 2x2nd root 3 to double root. Set 2x3=6 on B.
![](https://blogimg.goo.ne.jp/user_image/0f/ce/be4f9f91ea7cea51c2277cf58afe7384.png)
Step 10: Focus on double root 46 and 185.
![](https://blogimg.goo.ne.jp/user_image/29/66/f90c25abcaf54388250cec5b019151d4.png)
Step 11: Divide 185 by double root 46. Answer=4 reminder 1. Set them on F and I.
![](https://blogimg.goo.ne.jp/user_image/16/41/c871a781210e350588a15b521b6bf5bf.png)
Step 12: Subtract (3rd root 4)^2 from 3rd group 16. 16–4^2 =0: -b^2
![](https://blogimg.goo.ne.jp/user_image/5a/55/d17427f344cbf08144958950e3953543.png)
Step 13: Square root of 54756 is 234.
![](https://blogimg.goo.ne.jp/user_image/54/ba/18d216f22c5954fa8c4f077b31c391ff.png)
Final state: Answer 234
Abacus state transition. (Click to Zoom)
![](https://blogimg.goo.ne.jp/user_image/58/16/9e2a319a95ea458701988a7eb71de59a.png)
It is interesting to compare with the Half-multiplication table method.
Next article is also about Double-root method.
Related articles:
How to solve Cube root of 1729.03 using abacus? (Feynman v.s. Abacus man)
http://blog.goo.ne.jp/ktonegaw/e/cff5d6e7ecaa07230b9cc7af10b23aed
Index: Square root and Cube root using Abacus
http://blog.goo.ne.jp/ktonegaw/e/f62fb31b6a3a0417ec5d33591249451b
Square root 54,756 using abacus (Half-multiplication table method 4)
http://blog.goo.ne.jp/ktonegaw/e/1b44b7ed25f245921ba9546048c2e676
Please place your mouse on the buttons and click one by one. These are blog ranking sites.
![にほんブログ村 科学ブログ 物理学へ](https://blogimg.goo.ne.jp/user_image/05/0d/5a8dd65b22fb19995a76ac142488c719.png)
![人気ブログランキングへ](https://blogimg.goo.ne.jp/user_image/61/01/1b9cd83311fdf7d7cbffa113dfea11a1.png)
![](https://blogimg.goo.ne.jp/user_image/4c/cf/d9d69c9f86b74d235382790503be08b6.png)