超音波システム研究所

超音波の新しい利用に関するブログです

超音波システム研究所

2019-02-11 19:22:41 | 超音波システム研究所2011
表面弾性波を利用した超音波制御技術を開発
 

超音波システム研究所は、
超音波伝搬状態のコントロールに関して、
弾性体の表面弾性波を利用した、
超音波制御技術を開発しました。

 

超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、
3000リッターの水槽でも、
10mの鉄鋼配管・・・でも、
対象物への超音波刺激は制御可能です。

 

弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。

 

ポイントは
表面弾性波の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です

注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象

 

様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案しています。

参考動画
オリジナル非線形共振現象

https://youtu.be/-LnmwbPu-wg

https://youtu.be/ndRIIdVAr8Q

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究に関する動画・スライド ultrasonic-labo

2019-02-11 19:16:10 | 超音波システム研究所2011

超音波システム研究に関する動画・スライド ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

川の流れの観察 No.60

2019-02-11 17:54:40 | 超音波システム研究所2011

川の流れの観察 No.60

川の流れを観察しています

超音波システム研究所
ホームページ  http://ultrasonic-labo.com/

 

 

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波技術( Ultrasonic techniques )

2019-02-11 16:52:52 | 超音波システム研究所2011

超音波技術( Ultrasonic techniques )


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波洗浄機に関する最適化技術

2019-02-11 16:51:58 | 超音波システム研究所2011

超音波洗浄機に関する最適化技術

超音波洗浄機に関する最適化技術


水槽サイズ Tank size : 800*500*450mm

最大出力仕様 Output : 300W 
 28kHz、 72kHz(発振周波数)

動画の出力状態   200-220W

ポイント
 1: 超音波専用水槽
 2: 水槽の設置方法
 3: 振動子の水槽に対する設置
 4: 振動子の固定方法
 5: マイクロバブルの利用

***********************
超音波システム研究所
ホームページ  http://ultrasonic-labo.com/
改良技術  http://ultrasonic-labo.com/?p=1179
***********************

超音波装置の最適化技術をコンサルティング提供
 http://ultrasonic-labo.com/?p=1401

超音波による金属・樹脂表面の表面改質技術
 http://ultrasonic-labo.com/?p=1004

「超音波の非線形現象」を利用する技術
 http://ultrasonic-labo.com/?p=1328

 

 

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<樹脂容器の音響特性>を利用した超音波システム

2019-02-11 16:51:05 | 超音波システム研究所2011

超音波システム研究所は、
 *超音波振動子の設置による制御技術
 *定在波の制御技術
 *音響流の計測技術 ・・・を応用して
 <樹脂容器の音響特性>を利用した
  超音波(72kHz、28kHz 300W)システムを開発しました。

今回開発した技術の応用事例として、
 各種部品・材料の洗浄・攪拌・化学反応促進・・・について、
 超音波の非線形現象をコントロールすることが可能となりました。

■超音波技術

http://youtu.be/LKud8tQgPQ4

http://youtu.be/s0DdsNXuvyo

http://youtu.be/vqJh0Xy7rZQ

http://youtu.be/Q9fzjPV0128

http://youtu.be/QIvroquEOVs

http://youtu.be/koWiZ3ssWK8

http://youtu.be/nqKgJQrPRd8

http://youtu.be/vQLOstdYa84

http://youtu.be/sKPqXM95s7w

http://youtu.be/wOp3JVjgUes

http://youtu.be/6_GErpvAt84

http://youtu.be/95yehyv-ehM

http://youtu.be/hX3ddp4n9ng

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

オリジナル超音波実験 (超音波システム研究所 ultrasonic-labo)

2019-02-11 16:42:03 | 超音波システム研究所2011

オリジナル超音波実験 (超音波システム研究所 ultrasonic-labo)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

2種類の超音波振動子を利用した超音波装置 no.2

2019-02-11 16:30:14 | 超音波システム研究所2011

2種類の超音波振動子を利用した超音波装置 no.2


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<脱気・マイクロバブル発生液循環システム> No.3

2019-02-11 16:25:00 | 超音波システム研究所2011

超音波システム研究所は、

 目的に合わせた効果的な超音波制御を実現するために、
 <脱気・マイクロバブル発生液循環システム>を利用しています。



超音波液循環技術の説明

1)超音波専用水槽(オリジナル製造方法)を使用しています
2)水槽の設置は
  1:専用部材を使用
  2:固有振動と超音波周波数・出力の最適化を行っています
3)超音波振動子は専用部材を利用して設置しています
  (専用部材により、定在波、キャビテーション、音響流の
   利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します
   (標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています

上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
 超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)

目的の超音波状態確認は音圧測定解析(超音波テスター)で行います


ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします

脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します

液循環により、以下の自動対応が実現しています

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します

もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります
(説明としては、キャビテーション核の必要性が空気を入れる理由です
 液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
 同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません

この濃度分布の解決がマイクロバブルの効果です

脱気・マイクロバブル発生液循環が有効な理由です



以下の動画は
マイクロバブル発生液循環装置による
超音波のダイナミック制御を実現させています

<<参考動画>>

https://youtu.be/9GRrsjI3DEg

https://youtu.be/Vfv8Uerfp0c

https://youtu.be/quilYB42Jqg

https://youtu.be/vCeBsF_9uBs

https://youtu.be/XhzwZQdyK8E

https://youtu.be/FE7DPDkMOyQ

https://youtu.be/5od5p9RiyBI

https://youtu.be/pL9Hdgyc_LU

https://youtu.be/O29DJ9JIGO8

https://youtu.be/ht-QutAKMBw

https://youtu.be/B87Dl67l49s

https://youtu.be/75-8aLqtr3w

https://youtu.be/5of576CFU98

https://youtu.be/Eds0tOFFaLI

https://youtu.be/KtYAs49rwkQ

https://youtu.be/bQgUoQfQdsU

https://youtu.be/YYfNRD5d-cM

https://youtu.be/IW5A72TrMm4

https://youtu.be/BCQxXgJuX8I

https://youtu.be/dVqwVgvG79k

https://youtu.be/aRexmxACz2U

https://youtu.be/2iM2o34p1rM

https://youtu.be/ICNLzBjq80s

https://youtu.be/hHQc2xYlSlU

https://youtu.be/N-_YxaT11SM




上記の技術により
目的の超音波利用に合わせた
水槽の構造設計や液循環位置(ポンプへの吸い込み口、吐出口)は
非常に重要ですが
目的・サイズ・洗浄液・・によりトレードオフの関係が発生する場合があり、
一般的な設定はありません
(具体的な数値は、コンサルティング対応しています)

適切な設定が実現すると
マイクロバブルは超音波作用によりナノバブルに分散します
ナノバブルによる超音波の安定性は、マイクロバブルに比べて大きく
制御がより簡単になります
(具体的な制御は、音圧測定・・・コンサルティング対応しています
 洗剤の使用や撹拌・・では、
 通常の洗浄とは反対の対応事例が多い傾向にあります)


オリジナル技術(液循環)
http://ultrasonic-labo.com/?p=7658

<超音波のダイナミックシステム:液循環制御技術>
http://ultrasonic-labo.com/?p=7425

超音波水槽の新しい液循環システム
http://ultrasonic-labo.com/?p=1271

現状の超音波装置を改善する方法
http://ultrasonic-labo.com/?p=1323

超音波制御装置(制御BOX)
http://ultrasonic-labo.com/?p=4906

シャノンのジャグリング定理を応用した
「超音波制御」方法
http://ultrasonic-labo.com/?p=1753

超音波専用水槽の設計・製造技術
http://ultrasonic-labo.com/?p=1439

超音波とマイクロバブルによる
表面改質(応力緩和)技術
http://ultrasonic-labo.com/?p=5413
 

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波測定システム 超音波洗浄器(ポンプ波の実験)

2019-02-11 16:24:29 | 超音波システム研究所2011

超音波測定システム 超音波洗浄器(ポンプ波の実験)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする