*複数の異なる周波数の振動子の「同時照射」技術
*間接容器の利用に関する「弾性波動」の応用技術
*振動子の固定方法による「定在波の制御」技術
*時系列データのフィードバック解析による「超音波測定・解析」技術
*液循環に関する「ダイナミックシステム」の統計処理技術
*超音波の「非線形現象に関する」制御技術
*超音波とマイクロバブルによる「表面改質技術」
*超音波の「音圧測定・解析技術」
*磁性・磁気と超音波の組み合わせ技術
*超音波による「金属部品のエッジ処理」技術
上記の技術を組み合わせることで
対象物に合わせた、超音波攪拌技術(注)を開発しました。
注:超音波とマイクロバブルにより
攪拌ともに対象粉末・・の表面応力を緩和・均一化する処理が行われます

今回開発した技術の具体的な応用事例として、
カーボンナノチューブ、銀粉、鉄粉、銅粉、アルミニウム粉、
ガラス、樹脂、セラミック、ポリマー、・・・
に対して、超音波特有の効果を実現しました。
詳細な特性につきましては
お問い合わせください。
特に、
超音波の発振周波数に対する、
対象物への伝搬状態(キャビテーションと音響流の効果)を
明確に制御することで、安定した表面処理を実現しました。
非常に単純な事項が多いのですが
ノウハウとして詳細はコンサルティング対応させていただきます
複数の超音波振動子を利用する場合は
発振の順序、出力変化の方法、水槽内の液面の振動・・に関する
各種(時間の経過による特性の変化・・)の問題に、
<相互作用の影響>をグラフとして、把握することが重要です。
超音波・洗浄・改質・攪拌・・・様々な応用・研究・・につながっています。
■参考動画
http://youtu.be/VStQrJFBxrw
http://youtu.be/jowNkJJIRAY
http://youtu.be/lkiFPQL2jpI
http://youtu.be/b2lkl_DrptI
http://youtu.be/ZVpXLAnIXGo
http://youtu.be/25y4zHCrE2I
http://youtu.be/4H87dATnOVA
http://youtu.be/WxipcOkvrvo
http://youtu.be/2BjWJ4UZfrs
http://youtu.be/bCBi5Fc5V0M
http://youtu.be/f1ev0gDGuYQ
http://youtu.be/Z86YJLbPZD8
http://youtu.be/f1ev0gDGuYQ
http://youtu.be/J_i7RcsuUrI
http://youtu.be/L1h3HqNtP3Y
http://youtu.be/iyv8rr5cPhw
http://youtu.be/ZGK0Mrk8hEo
http://youtu.be/fwpRXMACIj8
http://youtu.be/uKOFBPDlO5w
これは、超音波に対する新しい視点です、
今回の実施結果から
対象物と超音波振動子の周波数の関係よりも
システムの超音波振動による非線形現象・相互作用の影響が
大変大きいことを確認しています。
超音波の伝搬状態を有効に利用するためには
相互作用による伝搬周波数の状態変化・・を検出して
最適化(制御)することが重要だと考えています。
コンサルティング事業としては、
2種類の超音波振動子の同時照射を使用するシステムを
主体として展開しています。
■参考
新しい超音波(測定・解析・制御)技術
http://ultrasonic-labo.com/?p=1454
磁性・磁気と超音波(Ultrasonic and magnetic)
http://ultrasonic-labo.com/?p=3896
超音波攪拌(乳化・分散・粉砕)技術
http://ultrasonic-labo.com/?p=3920
超音波システム研究所<理念Ⅱ>
http://ultrasonic-labo.com/?p=3865

超音波実験写真 Ultrasonic experiment (超音波システム研究所 ultrasonic-labo)
超音波とマイクロバブルによる表面改質 ultrasonic-labo
ファインバブル(マイクロバブル)を利用した超音波洗浄機 ultrasonic-labo
超音波システム研究所は、
超音波洗浄機の液体に伝搬する
超音波洗浄機の状態を測定・解析する技術を応用して、
水槽の構造・強度・製造条件・・・による影響と
液循環の状態を
目的に合わせた超音波洗浄機の状態に
設定・制御する技術を開発しました。
この技術は、
複雑な超音波振動のダイナミック特性(注1)を
各種の関係性について解析・評価することで、
循環ポンプの設定方法(注2)により、
キャビテーションと加速度の効果を
目的に合わせて設定する技術です。
注1:超音波システム研究所のオリジナル技術
「音色」を考慮した「超音波発振制御」技術を利用しています
( 音色と超音波
参考 http://ultrasonic-labo.com/?p=1082 )
注2:洗浄機と洗浄液と空気の
各境界の関係性に関する設定がノウハウです。
オーバーフロー構造になっていない洗浄水槽でも対応可能です。
ミクロ流の自己組織化について
脱気・曝気・超音波・水槽表面の弾性波動・・・により
音響流のコントロールが可能になりました。
( 超音波キャビテーションの観察・制御技術
参照 http://ultrasonic-labo.com/?p=10013 )
具体的な対応として
現状の水槽による、超音波の伝搬状態を
目的とするキャビテーション・加速度の効果を最適にする
パワースペクトルとして設定・制御することができます。
超音波テスターを利用した計測・解析により
各種の関係性・応答特性(注3)を検討することで
超音波の各種相互作用の検出により実現しました。
注3:パワー寄与率、インパルス応答・・・
( 超音波の<ダイナミック特性を考慮した制御>技術を開発
参照 http://ultrasonic-labo.com/?p=1142 )
超音波洗浄機の測定・解析に関して
サンプリング時間・・・の設定は
オリジナルのシミュレーション技術を利用しています
なお、この技術を
超音波システムの液循環方法の改良技術として
コンサルティング提案・実施対応しています。
ファインバブル(マイクロバブル)を利用した超音波洗浄機
推奨システム概要
1:超音波とファインバブルによる表面改質処理を行った
超音波振動子
2:超音波とファインバブルによる表面改質処理を行った
超音波専用水槽
3:脱気・ファインバブル(マイクロバブル)発生液循環システム
4:制御BOXによる、超音波出力と液循環の最適化制御システム
5:超音波テスターによる、音圧管理システム
注意:水槽・振動子・治工具については、エージング処理により
音響特性の調整対応が可能です
*特徴
超音波専用水槽による効果的な装置です
効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です
洗浄・攪拌・表面改質・・・対象と目的により
超音波(キャビテーション・音響流)を制御します
ポイントは
超音波の正確な発振周波数の測定・解析・確認と
解析と超音波利用目的に基づいて、
対象物・装置・治工具・・・の音響特性を考慮した
超音波伝搬状態を実現させる
以下の技術です
1)ファインバブルを利用した、専用水槽内の「液体」の均一化
2)超音波の非線形現象(音響流)制御としての「液循環」
3)超音波の発振制御(注)
注)シャノンのジャグリング定理を応用した「超音波制御」方法
http://ultrasonic-labo.com/?p=1753
治工具と各種の制御により、超音波照射状態を適正に設定することで、
キャビテーションと加速度(音響流)の効果を、
目的に合わせた状態にコントロールできます。
<< 超音波資料 >>
コストを下げて品質を改善した洗浄機の事例no2特別
http://ultrasonic-labo.com/wp-content/uploads/44b5b12b07f104e6bfb9c495337cc0ac-1.pdf
超音波とファインバブルによる超音波洗浄技術
http://ultrasonic-labo.com/wp-content/uploads/95f1450d8b79441a24857c113d890d7e-2.pdf
振動子設置ノウハウ
http://ultrasonic-labo.com/wp-content/uploads/215152fe07f65f50643cc7e920c7c306.pdf
脱気ファインバブル発生液循環装置
http://ultrasonic-labo.com/wp-content/uploads/0d06906ed477e9b3c93e654de84ac40e.pdf
超音波システム研究に関する動画・スライド ultrasonic-labo