確率統計に詳しい方,計算式を教えてください。
例えばこういう事例にします(もちろん架空事例ですので,こんな役員選任はおかしい,っていうつっこみはなしということで(^_^;)。
「100人のグループからくじ引きで10人の役員を選ぶ。役員は半年交代だが,半年後に再度100人でくじ引きをするため,再任もありとする。なお,グループの100人に変動はない。」
この場合,役員に選ばれる確率が10%という点はよいのでしょうが,次の場合はどう計算すればよいでしょうか。
1 半年後の役員の中に前回選ばれた役員(つまり連続して役員になる人)が1人以上入る確率
2 半年後の役員の中に前回選ばれた役員(同上)が1人だけ入る確率
3 半年後の役員の中に前回選ばれた役員(同上)が2人だけ入る確率
1については,1-(90C10)/(100C10)=67%になるかなあって思います。
2については,そもそもどういう計算式を立てればよいのか,見当がつきません。3はおそらく2の延長かと思いますがもはや私の頭では限界です。
この辺り,どなたかご教示下さい。よろしくお願いします。
よろしければ1クリックお願いしますm(__)m→人気blogランキングへ
例えばこういう事例にします(もちろん架空事例ですので,こんな役員選任はおかしい,っていうつっこみはなしということで(^_^;)。
「100人のグループからくじ引きで10人の役員を選ぶ。役員は半年交代だが,半年後に再度100人でくじ引きをするため,再任もありとする。なお,グループの100人に変動はない。」
この場合,役員に選ばれる確率が10%という点はよいのでしょうが,次の場合はどう計算すればよいでしょうか。
1 半年後の役員の中に前回選ばれた役員(つまり連続して役員になる人)が1人以上入る確率
2 半年後の役員の中に前回選ばれた役員(同上)が1人だけ入る確率
3 半年後の役員の中に前回選ばれた役員(同上)が2人だけ入る確率
1については,1-(90C10)/(100C10)=67%になるかなあって思います。
2については,そもそもどういう計算式を立てればよいのか,見当がつきません。3はおそらく2の延長かと思いますがもはや私の頭では限界です。
この辺り,どなたかご教示下さい。よろしくお願いします。
よろしければ1クリックお願いしますm(__)m→人気blogランキングへ
アドバイスありがとうございました。
逆に難しく考えすぎてしまったのかもしれません。組み合わせがどのくらいあるのかなあ,みたいな観点でコンビネーション公式を持ち出してしまいましたが,案外シンプル勝負でだせるかもしれません。
目から鱗です。ありがとうございました。
役員に選ばれるのは確率10分の1
その人が再度選ばれるのは同100分の1
(100人いるから1人ぐらいいて普通)
役員は10人いるから再任の確率は100分の10・・・10分の1
再任が2人の確率は10分の1×10分の1で100分の1
再任が1人以上の確率?
10分の1+100分の1+1000分の1・・・・・+10000000000分の1=
と思いますが・・・