超音波システム研究所

超音波の新しい利用に関するブログです

超音波システム研究に関する動画

2019-04-06 20:27:53 | 超音波システム研究所2011

超音波システム研究に関する動画


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波の非線形現象(音響流)をコントロールする技術 ultrasonic-labo

2019-04-06 20:25:46 | 超音波システム研究所2011

超音波の非線形現象(音響流)をコントロールする技術 ultrasonic-labo

超音波システム研究所(所在地:東京都八王子市)は、
 小型ポンプを利用した液循環により
 超音波(音響流)の伝搬状態をダイナミックに制御する
 「流水式超音波(音響流)制御技術」を開発しました。

超音波テスターによる
 流れと超音波の複雑な変化を、
 水槽・液体(マイクロバブル)・超音波振動子・・・
 の相互作用を含めた音圧解析により
 利用目的に合わせて、
 音響流の変化をコントロールするシステム技術です。

実用的には、
 現状の液循環装置について
 ON/OFF制御(あるいは流量・流速・・・の制御)を
 装置の設置状態、対象物を含めた表面弾性波を考慮して
 各種相互作用・振動モードを最適化する方法です。

特に、ポンプの特性を利用して、
 液体と気体を交互に循環させる・・・により
 新しい超音波・マイクロバブルの効果を実現しています。

ナノレベルの応用では、
 「流水式超音波システム」として
 20メガヘルツまでの周波数変化を含めた
 「超音波シャワー」による
 効率の高い超音波利用が実現しています。


-今回開発したシステムの応用実施事例-

オゾンと超音波の組み合わせ技術

低出力(50W以下)による10mサイズの水槽への超音波伝搬

ガラス・レンズ部品の精密洗浄(超音波シャワー技術)

複雑な形状・線材・真空部品・・・の表面改質(共振現象の制御技術)

溶剤・洗剤・・・・の化学反応(超音波と流れによる攪拌)

ナノレベルの粉末・塗料・触媒・・・攪拌・分散(表面弾性波の制御技術)

マイクロレベルの金属エッジ部のバリ取り

めっき・コーティング・表面処理・・・

・・・・・・・

上記の技術は、音圧(非線形現象)測定・解析に基づいて、
 表面弾性波と流体の流れに関して
 ダイナミック制御を実現させる
 新しい超音波システムの開発方法です。

興味のある方は、メールでお問い合わせください

 

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

小型・脱気マイクロバブル発生液循環システム

2019-04-06 20:25:01 | 超音波システム研究所2011

小型・脱気マイクロバブル発生液循環システム


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

小型ポンプを利用した「流水式超音波制御技術」 Ultrasonic experiment

2019-04-06 20:24:22 | 超音波システム研究所2011

小型ポンプを利用した「流水式超音波制御技術」 Ultrasonic experiment

超音波システム研究所は、
 目的に合わせた効果的な超音波のダイナミック制御を実現する、
 <脱気・マイクロバブル発生液循環システム>に関して
 空気(気体)をバブリングすることで
 超音波の非線形現象をコントロールする技術を開発しました。


超音波液循環技術の説明

1)超音波専用水槽(オリジナル製造方法)を使用しています。
2)水槽の設置は
  1:専用部材を使用
  2:固有振動と超音波周波数・出力の最適化を行っています。
3)超音波振動子は専用部材を利用して設置しています
  (専用部材により、定在波、キャビテーション、音響流の
   利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します。
   (標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています。

上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します。

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します。

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
 超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)

目的の超音波状態確認は音圧測定解析(超音波テスター)で行います。


ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします。

脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します。

液循環により、以下の自動対応が実現しています。

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します。

もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます。

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります。
(説明としては、キャビテーション核の必要性が空気を入れる理由です
 液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
 同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません。

この濃度分布の解決がマイクロバブルの効果です。

脱気・マイクロバブル発生液循環が有効な理由です。

注:
オリジナル装置(超音波測定解析システム:超音波テスター)による
音圧測定解析を行い
効果の確認を行っています。


上記の液循環状態に対して
ポンプから空気(気体)をバブリングすることで
水槽底面の表面弾性波の効果を利用して
マイクロバブルの発生効率が高くなるとともに
ダイナミックな超音波の変化を実現します。

気体の流量・流速分布・・・を適切に設定することで
目的に合わせた、非線形現象を発生させることができます。



  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波プローブによる金属部品の表面改質 (超音波システム研究所 ultrasonic-labo)

2019-04-06 20:23:51 | 超音波システム研究所2011

超音波プローブによる金属部品の表面改質 (超音波システム研究所 ultrasonic-labo)

超音波システム研究所は、
 オリジナル製品:超音波プローブの「発振・制御」技術を利用した
 部品検査、精密洗浄、ナノ分散、化学反応実験・・・・に関して、
 新しい「超音波<発振・制御>システム」を開発しました。

 目的に合わせたオリジナル超音波プローブによる応用技術です。
 超音波の音圧データを測定・解析・評価することで
 効果的な超音波の発振・制御が実現できるシステムです。

 特に、複数の発振・制御を組み合わせにることで
 高い音圧レベルや、非線形現象による高い周波数について
 コントロールできます。

 部品の接続状態や表面についての検査や
 非常に小さい部品の精密洗浄、表面処理、・・・に関して、
 超音波振動の新しい利用方法として提案しています。


超音波プローブは
 利用目的を確認した「オーダーメード対応」しています。


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム研究所( 音圧測定解析 自己相関 )

2019-04-06 20:23:12 | 超音波システム研究所2011

超音波システム研究所( 音圧測定解析 自己相関 )

超音波システム研究所は、
 超音波の測定・解析に基づいて、
 対象物、超音波水槽、液循環、・・による影響を考慮した
 超音波システムを開発・改善する技術を開発しました。

この技術は、
 複雑な超音波振動のダイナミック特性を
 各種の関係性について解析・評価することで、
 循環ポンプの設定方法(注)・・により、
 キャビテーション・加速度・音響流の効果を
 目的に合わせて設定する技術です。

注:具体的な条件に合わせた多数のノウハウがあります

 例:液循環の場合
  水槽と循環液と空気の
  境界の関係性に関する設定がノウハウです。
  オーバーフロー構造になっていない水槽でも対応可能です。

 例:水槽の場合
  超音波振動子に合わせた、設置方法により
  キャビテーション・定在波の
  伝搬周波数・音圧レベルの状態を調整します

具体的な対応手順

 1)現状の超音波照射状態を測定・解析する

 2)目的(対象物、サイズ・数量、材質・表面状態・・)を確認する

 3)これまでの状況を確認して
   超音波システムとしての総合評価を行う

 4)総合評価に基づいた
   問題点・改善点・・・の分析を行い
   効率的な改善方法を検討・整理・提案する

 5)改善の実施

   優先順位に合わせた、簡単な改善による変化の確認
   (超音波照射状態の測定解析 効果の確認)

   日常の超音波管理データの解析・評価に基づいた
   優先順位の低い大きな改善の実施タイミングを検討する
   (超音波照射状態の測定解析 効果の推定)

 6)超音波伝搬状態の管理方法を検討・整理・提案する

 7)継続的な改善につなげる
    測定・解析方法を検討・整理・提案する

 8)改善効果の測定・分析・・・

 上記のように
 継続的な超音波の管理により
 個別の対象物・・・に合わせた
 目的に最も効果的な超音波の状態を正確に把握することができます

 
超音波テスターを利用した計測・解析により
 各種の関係性・応答特性(注)を検討することで
 超音波の各種相互作用の検出により実現しています。

注:パワー寄与率、インパルス応答・・・

 超音波の測定・解析に関して
 サンプリング時間・・・の設定は
 オリジナルのシミュレーション技術を利用しています


なお、今回の技術を
 超音波洗浄、表面改質、化学反応実験・・・の改善技術として
 最適化のコンサルティング提案・実施対応を行っています。

<コメント>
最適化とは、分析とテスト・確認を通して、
 超音波システムを改善することであり、
 一度行えば終わりという作業ではありません。
計測・解析・改善・評価・最適化、そして再び計測というサイクルを
 何度も繰り返すことで、より良い改善に向かいます。
・・・・・・
重要なことは、
 常にパフォーマンスの改善を続けていくというプロセスを、
 「どのようにして導入していくのか(注)」ということです。

注:オリジナル製品:超音波テスターによる
  音圧測定・解析による日常管理により実現できます


参考

音圧変化
http://youtu.be/Cju6S9cTZAE

パワースペクトル
http://youtu.be/UZE147Nsgvg

バイスペクトル
http://youtu.be/dHZnElHefqA

自己相関
http://youtu.be/8LN9M7GQfgQ

通信の数学的理論
  http://ultrasonic-labo.com/?p=1350

音色と超音波
  http://ultrasonic-labo.com/?p=1082

モノイドの圏
  http://ultrasonic-labo.com/?p=1311

物の動きを読む
  http://ultrasonic-labo.com/?p=1074

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波攪拌技術(ガラス・超音波・相互作用 ultrasonic-labo)

2019-04-06 20:22:43 | 超音波システム研究所2011

超音波攪拌技術(ガラス・超音波・相互作用 ultrasonic-labo)


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

音圧データの解析 (超音波システム研究所 ultrasonic-labo)

2019-04-06 20:22:16 | 超音波システム研究所2011

音圧データの解析 (超音波システム研究所 ultrasonic-labo)

超音波システム研究所は、
 超音波利用に関して、
 <統計的な考え方>を利用した
 効果的な「測定・解析・評価方法」に関する技術を開発しています。

<統計的な考え方について>
 統計数理には、抽象的な性格と具体的な性格の二面があり、
 具体的なものとの接触を通じて
 抽象的な考えあるいは方法が発展させられていく、
 これが統計数理の特質である

超音波の研究について
「キャビテーションの効果を安定させるには統計的な見方が不可欠」

<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。

正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。

<モデルと現状のシステムとの関係性について>
( 考察する場合の注意事項 )

1)先入観や経験は正しくないことがあると考える必要があります

2)モデルの本質を考えるためには、
 圏論(注)を利用することが有効だと考えています
 (実際に応用化学や量子論などで積極的に利用されています)

注:圏論は、数学的構造とその間の関係を抽象的に扱う数学理論

<論理モデルの作成について>
(情報量基準を利用して)

1)各種の基礎技術(注)に基づいて、対象に関する、

 D1=客観的知識(学術的論理に裏付けられた理論)
 D2=経験的知識(これまでの結果)
 D3=観測データ(現実の状態)

  からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
  その組織的利用から複数のモデル案を作成する

2)統計的思考法を、
   情報データ群(DS)の構成と、
   それに基づくモデルの提案と検証の繰り返し
   によって情報獲得を実現する思考法と捉える

3) AIC の利用により、
   様々なモデルの比較を行い、最適なモデルを決定する

4) 作成したモデルに基づいて
   超音波装置・システムを構築する

5) 時間と効率を考え、
 以下のように対応することを提案しています

5-1)「論理モデル作成事項」を考慮して
   「直感によるモデル」を作成し複数の人が検討する

5-2)実状のデータや新たな情報によりモデルを修正・検討する

5-3)検討メンバーが合意できるモデルにより
   装置やシステムの具体的打ち合わせに入る

上記の参考資料
 1)ダイナミックシステムの統計的解析と制御
   :赤池弘次/共著 中川東一郎/共著:サイエンス社
 2)生体のゆらぎとリズム コンピュータ解析入門
   :和田孝雄/著:講談社 

<<< 論理モデル >>>

通信の数学的理論
 http://ultrasonic-labo.com/?p=1350

音色と超音波
 http://ultrasonic-labo.com/?p=1082

モノイドの圏
 http://ultrasonic-labo.com/?p=1311

物の動きを読む<統計的な考え方>
 http://ultrasonic-labo.com/?p=1074

超音波の洗浄・攪拌・加工に関する「論理モデル」
 http://ultrasonic-labo.com/?p=3963



  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波洗浄器にガラス容器を入れる・・・

2019-04-06 20:21:44 | 超音波システム研究所2011

超音波洗浄器にガラス容器を入れる・・・

 

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

オリジナル超音波プローブの「発振・制御」技術 ultrasonic-labo

2019-04-06 20:21:11 | 超音波システム研究所2011

オリジナル超音波プローブの「発振・制御」技術 ultrasonic-labo

超音波システム研究所は、
 2種類の超音波プローブ(圧電素子)と
 ファンクションジェネレータを利用して、
 超音波発振制御技術による、
 超音波の非線形現象をコントロールする技術を開発しました。

新しい超音波の応用技術です。
 対象物の音響特性に合わせた、超音波発振制御により
 共振・干渉・非線形・・・のダイナミックな変化を
 目的に対して効果的な、
 超音波の伝搬周波数・音圧レベル・変化・・を実現します。
 
変動する振動状態(モード)を利用する
 ダイナミックシステムとしての
 装置開発も可能です。

特に、超音波テスターを利用したこれまでの
 計測・解析により
 各種の関係性・応答特性(注)を検討することで
 超音波の各種相互作用を解析・評価・制御する方法を開発しました。

注:パワー寄与率、インパルス応答・・・


ポイントとしては、
 複雑に変化する超音波の利用状態を、
 音圧や周波数だけで評価しないで
 「音色」を考慮するために、
 時系列データの自己回帰モデルにより解析して
 評価・応用することです。

目的に応じた利用方法が可能です

 例1:ナノレベル粉末の表面処理・撹拌
   (金、銀、・・・)

 例2:マイクロレベルの液量に対する化学反応
   (洗剤、溶剤、・・・)

 例3:接触部分への超音波伝搬
   (部品検査、表面検査、・・・)
      
 例4:金属加工状態への超音波伝搬

 ・・・・・・・・・

上記の具体的な実施は、
 音楽表現でいうところの「暫時的位相変換プロセス」を
 2種類の超音波プローブで実現させます

これは、幅広い解釈と組み合わせが可能だと考えられますが
 現実的には、各種対象物・・・の音響特性により
 効果的な範囲は非常に狭く
 測定確認が重要です。

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする