非線形振動現象をコントロールする超音波技術 ultrasonic-labo
Ultrasonic Sound Flow water effect NO.10
Ultrasonic Cavitation Control.
超音波の非線形性現象を利用しています。
<<超音波システム研究所>>
ホームページ http://ultrasonic-labo.com/
超音波攪拌(乳化・分散・粉砕)技術を開発
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
超音波システム研究所は、
*複数の異なる周波数の振動子の「同時照射」技術
*間接容器の利用に関する「弾性波動」の応用技術
*振動子の固定方法による「定在波の制御」技術
*時系列データのフィードバック解析による「超音波測定・解析」技術
*液循環に関する「ダイナミックシステム」の統計処理技術
*超音波の「非線形現象に関する」制御技術
*超音波とマイクロバブルによる「表面改質技術」
*超音波の「音圧測定・解析技術」
*磁性・磁気と超音波の組み合わせ技術
*超音波による「金属部品のエッジ処理」技術
上記の技術を組み合わせることで
対象物に合わせた、超音波攪拌技術(注)を開発しました。
注:超音波とマイクロバブルにより
攪拌ともに対象粉末・・の表面応力を緩和・均一化する処理が行われます
今回開発した技術の具体的な応用事例として、
カーボンナノチューブ、銀粉、鉄粉、銅粉、アルミニウム粉、
ガラス、樹脂、セラミック、ポリマー、・・・
に対して、超音波特有の効果を実現しました。
詳細な特性につきましては
お問い合わせください。
特に、
超音波の発振周波数に対する、
対象物への伝搬状態(キャビテーションと音響流の効果)を
明確に制御することで、安定した表面処理を実現しました。
非常に単純な事項が多いのですが
ノウハウとして詳細はコンサルティング対応させていただきます
複数の超音波振動子を利用する場合は
発振の順序、出力変化の方法、水槽内の液面の振動・・に関する
各種(時間の経過による特性の変化・・)の問題に、
<相互作用の影響>をグラフとして、把握することが重要です。
超音波・洗浄・改質・攪拌・・・様々な応用・研究・・につながっています。
■参考動画
http://youtu.be/VStQrJFBxrw
http://youtu.be/jowNkJJIRAY
http://youtu.be/lkiFPQL2jpI
http://youtu.be/b2lkl_DrptI
http://youtu.be/ZVpXLAnIXGo
http://youtu.be/25y4zHCrE2I
http://youtu.be/4H87dATnOVA
http://youtu.be/WxipcOkvrvo
http://youtu.be/2BjWJ4UZfrs
http://youtu.be/bCBi5Fc5V0M
http://youtu.be/f1ev0gDGuYQ
http://youtu.be/Z86YJLbPZD8
http://youtu.be/f1ev0gDGuYQ
http://youtu.be/J_i7RcsuUrI
http://youtu.be/L1h3HqNtP3Y
http://youtu.be/iyv8rr5cPhw
http://youtu.be/ZGK0Mrk8hEo
http://youtu.be/fwpRXMACIj8
http://youtu.be/uKOFBPDlO5w
これは、超音波に対する新しい視点です、
今回の実施結果から
対象物と超音波振動子の周波数の関係よりも
システムの超音波振動による非線形現象・相互作用の影響が
大変大きいことを確認しています。
超音波の伝搬状態を有効に利用するためには
相互作用による伝搬周波数の状態変化・・を検出して
最適化(制御)することが重要だと考えています。
コンサルティング事業としては、
2種類の超音波振動子の同時照射を使用するシステムを
主体として展開しています。
■参考
新しい超音波(測定・解析・制御)技術
http://ultrasonic-labo.com/?p=1454
磁性・磁気と超音波(Ultrasonic and magnetic)
http://ultrasonic-labo.com/?p=3896
超音波攪拌(乳化・分散・粉砕)技術
http://ultrasonic-labo.com/?p=3920
超音波システム研究所<理念Ⅱ>
http://ultrasonic-labo.com/?p=3865
音圧測定装置:超音波テスターを利用した実験動画 Ultrasonic system
超音波システム研究所(所在地:東京都八王子市)は、
超音波伝搬状態のコントロールに関して、
ファンクションジェネレータと超音波プローブを応用することで、
1-20MHzの超音波伝搬状態を利用可能にする
超音波発振制御技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
表面弾性波の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案しています。
<統計的な考え方>を利用した「超音波技術」
参考動画
超音波システム研究所は、
超音波利用に関して、
<統計的な考え方>を利用した
効果的な「測定・解析・評価方法」に関する技術を開発しています。
<統計的な考え方について>
統計数理には、抽象的な性格と具体的な性格の二面があり、
具体的なものとの接触を通じて
抽象的な考えあるいは方法が発展させられていく、
これが統計数理の特質である
超音波の研究について
「キャビテーションの効果を安定させるには統計的な見方が不可欠」
<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。
正確なモデルの構築は難しく、
常に対象の複雑さを適当に”丸めた”形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。
<モデルと現状のシステムとの関係性について>
( 考察する場合の注意事項 )
1)先入観や経験は正しくないことがあると考える必要があります
2)モデルの本質を考えるためには、
圏論(注)を利用することが有効だと考えています
(実際に応用化学や量子論などで積極的に利用されています)
注:圏論は、数学的構造とその間の関係を抽象的に扱う数学理論
<論理モデルの作成について>
(情報量基準を利用して)
1)各種の基礎技術(注)に基づいて、対象に関する、
D1=客観的知識(学術的論理に裏付けられた理論)
D2=経験的知識(これまでの結果)
D3=観測データ(現実の状態)
からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
その組織的利用から複数のモデル案を作成する
2)統計的思考法を、
情報データ群(DS)の構成と、
それに基づくモデルの提案と検証の繰り返し
によって情報獲得を実現する思考法と捉える
3) AIC の利用により、
様々なモデルの比較を行い、最適なモデルを決定する
4) 作成したモデルに基づいて
超音波装置・システムを構築する
5) 時間と効率を考え、
以下のように対応することを提案しています
5-1)「論理モデル作成事項」を考慮して
「直感によるモデル」を作成し複数の人が検討する
5-2)実状のデータや新たな情報によりモデルを修正・検討する
5-3)検討メンバーが合意できるモデルにより
装置やシステムの具体的打ち合わせに入る
上記の参考資料
1)ダイナミックシステムの統計的解析と制御
:赤池弘次/共著 中川東一郎/共著:サイエンス社
2)生体のゆらぎとリズム コンピュータ解析入門
:和田孝雄/著:講談社
超音波を利用した「分散」技術
超音波システム研究所は、
*複数の異なる周波数の振動子の「同時照射」技術
*間接容器の利用に関する「弾性波動」の応用技術
*振動子の固定方法による「定在波の制御」技術
*時系列データのフィードバック解析による「超音波測定・解析」技術
*液循環に関する「ダイナミックシステム」の統計処理技術
上記の技術を組み合わせることで
対象物に合わせた、超音波分散技術を開発しました。
今回開発した技術の具体的な応用事例として、
カーボンナノチューブ、銀粉、鉄粉、銅粉、アルミニウム粉、・・・
に対して、超音波特有の新しい分散効果を実現しました。
容器に合わせた超音波の設定状態です
超音波を利用した「分散」技術を開発
http://ultrasonic-labo.com/?p=1066
超音波の伝播現象における「音響流」を利用する技術
http://ultrasonic-labo.com/?p=1410
超音波システム研究所
ホームページ http://ultrasonic-labo.com/