深く潜れ(Dive Deep)! キネシオロジー&クラニオセイクラル・ワーク(クラニオ)の蒼穹堂治療室

「ココロとカラダ」再生研究所、蒼穹堂治療室が送る、マニアックなまでに深く濃い、極私的治療論とお役立ち(?)情報の数々。

代数的トポロジーを治療に用いる

2017-01-07 21:03:26 | 心身宇宙論

2017年正月、やっと田村一郎の『トポロジー』を最後まで終えた。読み始めたのが2015年の夏頃だったので、およそ1年半を費やしたことになる。私がこの本と出合ったのは大学の数学科に入ってすぐだった。もしかしたら、これは自分が初めて手にした数学書だったかもしれない。だからそれを読み終えたことは、私にとっては30年来の宿題をやり終えたような感じでもある。

 

さて、その田村一郎の『トポロジー』は代数的トポロジー(代数的位相幾何)についての入門的教科書/参考書である(内容としては大学の数学科3,4年レベル)。位相幾何学にはもう1つ、微分トポロジー(微分位相幾何)というものがあり、それはこれから始める予定だ。読み終わるのはまた1年半後か、あるいはもっとかかるか…。

ここでトポロジー(位相幾何学)とは何か?ということについて簡単に述べると、トポロジーとは図形を連続的に変形しても変わらない性質(これを位相不変量という)について研究する数学の一分野である。そして代数的トポロジーとは、図形に代数的な仕組みを入れることによって、図形の持つ性質を代数的な演算によって求められるようにしようというものだ。
数学者が考える図形とは一般にn次元の図形になるので、絵に描くことはできず、中学数学でやる平面幾何学の時のような「幾何学的直感」というものがなかなか期待しづらい。そこで代数的な仕組みを入れ込んで演算によって図形の性質が求められるようにしたのである。そのために開発されたのがホモロジー群、ホモトピー群、基本群(ポアンカレ群)といったツールたちで、それらは現代数学における基本概念になっている(そして田村一郎の『トポロジー』は、それらについて解説した本なのだ)。

例えば2次元球面(3次元球体の表面部分)と2次元円環面(ドーナツの表面部分)のホモロジー群を計算すると、
2次元球面は2次元ホモロジー群がZ、1次元ホモロジー群が0
であるのに対して、
2次元円環面は2次元ホモロジー群が0、1次元ホモロジー群がZ+Z(この+は直和の意味)
となって、計算結果から明らかに2つの図形は違う性質を持つことがわかる。

で、ここからその代数的トポロジーを治療に用いるという話が始まるわけだが、過去記事「微分方程式論を治療に用いる」では、体の変化する部分、動きのある部分に対して、常微分方程式における基本定理である「解の存在と一意性の定理」を用いることができる、ということを書いた。それに対して、代数的トポロジーは元々、図形の分類に用いられるものだからだと思われるが、マイヤー・ビートリスの完全系列やファン・カンペンの定理が臓器などの構造的(=幾何学的)な問題に対して適用できる。
具体的には子宮内部や心臓内部の問題などに対して、これらが使えるようだ。

残念ながらHTMLは非力で、マイヤー・ビートリスの完全系列もファン・カンペンの定理もここには記述することができないので、外部にリンクを張った。

マイヤー・ビートリスの完全系列については、熊本大学の講義テキストだと思われる「幾何学Ⅰ講義ノート」を参照。pdfファイルで22ページあり、マイヤー・ビートリスの完全系列の説明は14ページから始まり、式自体は15ページに定理3.8として出ている。

ファン・カンペンの定理については、関西大学の何かの発表用資料だと思われる「クラインの壺の二重被覆、四重被覆の決定とそれらの関係性」を参照。pdfファイルで10ページあり、ファン・カンペンの定理は3ページ冒頭にTheorem2.8として出ている。

え、式の意味がわからない? これらの定理に書かれていることを理解しようとするなら、少なくとも3~5年かけて数学を勉強しなければならないが、それは現実的でないだろう。だから意味がわかって使うことがもちろん望ましいが、意味がわからなくても一種の御札と考えて使えば、それで十分効果はある。

では、なぜ数式が治療ツールになり得るのか?

この世界の事象の全ては──「もの」も「こと」も──情報へと還元される。例えば身体という物理的実体も、突き詰めれば全て情報として捉えることができる。それは即ち、情報の側を操作することによって、物理的実体としての身体も変えられるということを意味する。そして数学的実体とは概念、即ち情報そのものであり、しかもその概念=情報は単なる空理空論ではなく、この世界における絶対真理である。だから適切な数学概念を適切なところに用いることで、情報レベルの乱れを正常化することができ、その結果として身体という物理的実体も正常化させることができる、というのが私の考えだ。

あるいは、波動という言葉を持ち出すなら、数式はサイマティック・セラピー(音響波動療法)と同じような波動共鳴を引き起こさせるのだ、と言い換えてもいいだろう。そして量子論でいえば物質とは波としての側面と粒子としての側面を持っているから、波が変化するということは粒子自体が変化するということに他ならない。波を情報、粒子を物理的実体と読み替えれば、このことは上と同じことを言っていることがわかる。


コメント    この記事についてブログを書く
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする
« 『オカルト生理学』を読む 7 | トップ | 落語心中 »
最新の画像もっと見る

コメントを投稿

心身宇宙論」カテゴリの最新記事