学コン6月号、6番にはまる・・・

2011-05-29 | 受験・学習ノウハウ
厳密に論証するトレーニングにとても良さそうです!

{a_n}=1となることを、初項a_1=1,b_2=2と、1+b_n^3の因数分解とから、
帰納法的に示す。

すると、N項までの、a_n/b_n の和は、

(b_N - 2)/(b_N -1) + 1/b_N と書け、すなわち、

1 - 1/{b_N(b_N-1)} となる。

因数分解の式から、b_n = (b_(n-1))^2 - b_(n-1) +1 なので、

b_N - b_(N-1)= (b_(N-1) -1 )^2 >0 (但し、b_n ≠ a_n=1) とわかり、

b_nは単調増加!

N→∞では、和の極限c = 1となりそうだ。

そうなら、

b_(N+1) -1 ≧ 2^2011 となる最小のNを求めるのが、(2)の作業となる。

ここで、どうやってNを求めるのかわからず、

髪の毛が10本抜ける・・・・・やばい。。。

お休みなさい。

コメント    この記事についてブログを書く
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする
« 雨ですが、映画に出かけるつ... | トップ | 学コン 6番 2011年6月号 ... »
最新の画像もっと見る

コメントを投稿

ブログ作成者から承認されるまでコメントは反映されません。

受験・学習ノウハウ」カテゴリの最新記事