ヘーゲルにおいて量の質への転嫁は、単にそれが物体として外化するだけでなく、生命ある有機体として、そして精神的本質として現実化するものでなければならない。前章において既に意識は反省として現れたが、それは自己同一的な有機体ではなく、物体の自己反射の姿でしかなかった。しかし物体から有機体への飛躍は、ただ単に量の漸増の延長上に現れるのではなく、物体における排他的な関係選択において現れなければならない。なぜならその関係選択は、物理を超える形で初めて現れた意識の決意であり、意志だからである。さらにヘーゲルは、意思を単なる物理の延長として描くのを拒否し、その変化を単なる量的変化と区別して飛躍と呼ぶ。この飛躍の言葉によってヘーゲルが目指すのは、一つにカント式の物心断絶から認識を守ることであり、一つにスピノザ式の意識の死滅の回避である。それゆえにこの飛躍と言う表現は、面白いことに、両者の間の深淵を飛び超えるヘーゲル自身の姿を表現するものになっている。以下ではヘーゲルにおいてエンゲルスの「自然の弁証法」を凌駕する唯物弁証法が展開されたヘーゲル度量論の後半部分となる第三篇第二章を概観する。
[第一巻存在論 第三篇「度量」第二章「現実的度量」の概要]
量から質への転化を機械論的親和と有機的中和において説明し、存在論の総括を準備しつつ本質論への橋頭保を成す度量論の本論部分の論述部位
・現実的物体 …冪表現した比率により自らの質を表現した物体
・即自規定存在…物体の直接的質を成す指数の総体
・親和 …対立の無い物同士の外面的な機械論的結合。
・中和 …対立を止揚し合う物同士の内面的な有機的結合。
・混合 …二物の各度量単位が維持された力学的結合
・化合 …二物の各度量単位を排他的に統一する微粒子的結合
・対自規定存在…中和における自己度量客体化の媒介としての他物の度量
・関係選択Wahl-verwandtshaft
…物体間の飽和比率の差異に従った、中和対象の排他的選択
・結節線 …結合における度量の排他的統一を規定する二物の量比率
・飛躍 …量の漸増における度量の消滅と、転化した度量の質的創出
・事Sache …自己同一的な質と量の相互推移過程としての恒常的物質
1)物体同士の親和と排他
現実となった度量は独立した物体として現れ、度量相互の関係も物体同士の外面的関係となる。それは単に空間と時間で表現される比率ではなく、重さや熱などと関係し、それらの物的関係を比率として現す。その独立した物的関係は、度量の量的変化に応じて現れる物体の質である。そして個々の直接的比率は相互に比率を成し、比重や比熱などの度量の特殊な系列に至る。度量間の物質的差異は、その量的比率が織りなす系列の一分肢である。量的比率が物同士の対立を示さないのであれば、その系列は物同士の親和性(化学的親和性)を示すだけである。しかし個々の直接的比率は、それらの持つ排他性において量として現れる一方で、質において比率を中断する結節線を持つ。それは物体同士の親和と排他として現れ、その量的比率の系列も一つの排他的対自存在に変わる。ここでの親和性は量的比率に応じて排他を生み、単なる親和性Affinitateではなく関係選択Wahl-verwandtshaftとして現れる。このような度量の比率展開は、再び相互推移において没度量化し、そしてそれらの度量の排他的統一において度量を本質に導くことになる。
2)物の現実化
物体は二つの限定量の度量規定を自らの質に含む。そしてそのような限定量がさらにそれ自身の質を持つ。したがってさしあたり物体の質は、二つの限定量の質の関係である。ここでの関係の一方を成す質は、物体の対自で現れる重量や部分などの内在である。そして関係の他方を成す質は、内在の外面に現れた抽象や空間である。これらの二つの質の量的比率が物体の質を構成する。例えば一定の容積における重量として比重がそのような質に該当する。この質の量的比率では、空間などの外面が単位として現れ、重量などの内在がその集合数として現れる。この質の量的比率が冪比率として現れると、一方の他方に対する一定の比率を限度にして、その比率限定量は指数として消滅する。ここでの冪比率は、物の排他的対自において復活した物の直接的質である。ちなみにここで起きているのは、前章における抽象的度量の現実化と同じ展開である。しかし度量は既に物体として現実化しており、個物の物体への現実化も既に完了している。したがってここで現実化するのは単なる物体ではない。それは物体の質を備えた化合物であり、もしくはより高度な組織としての有機体である。もちろんヘーゲルの目指すのは、現実的な度量が物体として現れたように、より現実的な物体として生命体を現わすことにある。
3)物体の固有な即自規定存在
物体の直接的質は、端的に言えば指数として現れる。したがって他物と比較されるような物体の特殊性も、この指数において現れる。ただしその指数の特殊性を規定するのは、他物の同じ指数である。例えば物体の比重の特殊性を規定するのは、他物の比重である。物体におけるこのような指数の総体が、物体の特殊な即自規定存在das spezitifische An-sich-bestimmtseinを成す。しかしこの即自規定存在は、比率限定量としての指数の総体であり、一般的な物質や限定量ではない。ただしそれらの指数も限定量であり、ゆえに変化するものである。それゆえに物体同士の関係も、変化する固有の指数を持つ二つの即自規定存在の関係として現れる。そしてこの関係の中で独自な両者の度量は、相互の限定量を比率化する一方で、相互の指数も比率化する。両者の結合では、限定量の比率が重量などの内面的な結合限定量を決定する。その一方で、指数の比率が自らと限定量の比率に従い、比重などの結合指数と容積などの外面的な結合限定量を決定する。これにより例えば比重の異なる物体同士の結合で、重量が単純な合算となる一方で、比重の相互浸透的中庸化と合算容積の縮小が起きる。
4)物体の中和における即自規定存在の対自
それぞれの物体は自らを単位にした即自規定存在を持つ。しかしそれらは自らを単位にして他者を比較するだけである。異なる単位で現れる即自規定存在同士は、自他を相互に比較できない。そこで物体は自他の中和にあたり、新たな単位を対自的に擁立する。端的に言えば物体は、中和において自らを客体化し対自する。ここでの対自的単位は、比較二物がそれぞれに持つ比例指数の間に成立する比率から擁立される。ただしその成立は、比較二物の持つ比例指数間の定比例を前提する。一方でこの対自的単位の擁立に関わらず、比較二物がそれぞれに持つ単位は自立する。したがって二物の結合では、二物の間に力学的混合と微粒子的化合の二種が発生可能である。前者は双方が独立した機械論的結合であり、後者は双方が中和する有機的結合である。しかし中和がなされなければ、二物の相互比較は雑多な多者における量比較に留まる。いずれにせよ擁立された単位と比較二物の各限定量は、三つ巴に現れる各指数系列における各単位の集合数となる。また各指数系列の単位も、他の指数系列上に対自的に現れる。
5)対自的規定存在における関係選択
もともと限定量の目盛りと違い、度量の目盛りは比率である。そしてこの比率を規定するのは、対自する比率の全体である。ここでの度量の対自的規定存在は、限定量としての度量を否定し、比率において度量の質を目盛りに表わす。しかしその否定は、二物の力学的混合において物体の量を量比率で表現するだけの親和に留まる。ところが上記で見たように、この度量の質はさらに二物の中和において新たな質へと推移する。それは二物の質を再び否定し、その排他的統一において量を新たな質に転化する限度である。この否定の現れが、二物の微粒子的化合において親和と対立を量比率の差異で表現する関係選択Wahl-verwandtshaftである。ここでの物体の質は、まず中和における物体の量的飽和比率の差異として現れる。しかしこの外延的差異は、中和における二物の内包的親和に転化し、その親和に強度をもたらす。そしてこの外延の内包への転嫁が他物の排他を生み、その全体が関係選択として現れる。
6)混合と化合
酸と塩基(加里)は、排他的かつ相互補完関係にある物体の化学的性質である。ただし個々の物体の質に応じて酸と塩基の中和必要量が異なる。一方でヘーゲルにとって二物の混合における量から質への転化は、化合として現れなければならない。ヘーゲルはそれを単なる親和から関係選択への転化として捉える。したがってそれぞれの物体の量比率だけでなく、関係選択の差異はその物体量に現れた質である。他方でこの関係選択の概念は、ベルトレにおいて化学的質量作用として修正された。ところがベルトレのそれは、並存する二種の酸が平行して塩基の中和に作用するので、関係選択になっていない。ベルトレは、一方の酸だけが中和を起こす関係選択を、物体の凝集の強度や水溶性、または温度に起因するものと理解している。それは親和における質的区別を全て量的区別に扱い、微粒子的化合を力学的混合にする見解である。このベルトレの見解を継承するベルチェリウスに至っては、力学的混合が微粒子的化合と入れ替わり、逆に微粒子的化合を力学的混合とみなして批判している。しかも化合を混合と同一視する彼の見解は、化合を電荷極性に基づく結合と同一視する見解にまで進展している。ほかにも同様の見解として比重の中和を単なる相互浸透と同一視するものなどがあるが、ヘーゲルはそれらをいずれも謬見に扱っている。
7)量から質への転化
中和する物体は、対自において二物の自己自身と反発する。この反発は二つの自己自身を自己の契機としてともに否定する。しかし二物の自己は、その否定した二つの自己自身を一つの自己に排他的に統一にする。これにより否定された二物の自己の度量は、新たな自己において新たな度量へと転化する。その転化に要した二物の量比率は、二物において自己自身の質を転回する結節線を成す。ここで起きる二物の変化は、二物の量の漸増がもたらした漸進的変化ではない。漸進的変化では二物の質に変化は起きないが、結節線では量の変化が二物に質の変化を起こしている。したがってそれは漸進的変化ではなく、飛躍である。ここでの度量の転身は、以前の度量にとって自己の消滅として現れる。
8)量的無限の自己同一性
度量の転身において以前の度量は消滅するが、量の漸増がそれで不可能になったわけではない。限定量とは、脱自において無限に連続する分離量だからである。この量的無限性は、質と量の排他的統一である度量についても該当する。一方で度量は直接的質の自己復帰である。このことは、自己滅却して新たに現れた度量についても該当する。すなわち新たな度量の自己には、消滅した以前の自己が復帰している。ただしその度量が表す比率は変わるので、その自己の質も実際には変わっている。しかしこの自己の変化は、新たな自己にとって外面的な質的変化に留まる。すなわち自己の断絶は、新たな自己にとって既に単なる契機である。このことは度量に排他的に統一された各種度量についても該当し、それらはいずれも新たな度量において既に単なる契機である。このように自己同一性を保持する度量は、恒常的な物質として現れる。この恒常的な物質の限定存在は、質と量の相互推移過程である。そしてその推移過程のいずれもが、この物質の現実化の過程である。そこでヘーゲルは、この恒常的な物質を常住的存在として単なる物と区別し、事Sacheとして扱う。事の自己においてこれらの推移過程に現れた各種契機はその独立性を失っている。すなわちいずれの契機も、今では推移する事の自己の状態に成り下がっている。
(2019/11/21) 続く⇒(ヘーゲル大論理学 第一巻存在論 第三篇 第三章) 前の記事⇒(ヘーゲル大論理学 第一巻存在論 第三篇 第一章)
ヘーゲル大論理学 存在論 解題
1.抜け殻となった存在
2.弁証法と商品価値論
(1)直観主義の商品価値論
(2)使用価値の大きさとしての効用
(3)効用理論の一般的講評
(4)需給曲線と限界効用曲線
(5)価格主導の市場価格決定
(6)需給量主導の市場価格決定
(7)限界効用逓減法則
(8)限界効用の眩惑
ヘーゲル大論理学 存在論 要約 ・・・ 存在論の論理展開全体
緒論 ・・・ 始元存在
1編 質 1章 ・・・ 存在
2章 ・・・ 限定存在
3章 ・・・ 無限定存在
2編 量 1章・2章A/B・・・ 限定量・数・単位・外延量・内包量・目盛り
2章C ・・・ 量的無限定性
2章Ca ・・・ 注釈:微分法の成立1
2章Cb(1) ・・・ 注釈:微分法の成立2a
2章Cb(2) ・・・ 注釈:微分法の成立2b
2章Cc ・・・ 注釈:微分法の成立3
3章 ・・・ 量的比例
3編 度量 1章 ・・・ 比率的量
2章 ・・・ 現実的度量
3章 ・・・ 本質の生成
※コメント投稿者のブログIDはブログ作成者のみに通知されます