配列関数
累積的な演算 accumulate(op, A; dims::Integer, [init])
累和
julia> accumulate(+, [1,2,3])
3-element Array{Int64,1}:
1
3
6
累積
julia> accumulate(*, [1,2,3])
3-element Array{Int64,1}:
1
2
6
julia> accumulate(+, [1,2,3]; init=100)
3-element Array{Int64,1}:
101
103
106
julia> accumulate(min, [1,2,-1]; init=0)
3-element Array{Int64,1}:
0
0
-1
julia> accumulate(+, fill(1, 3, 3), dims=1)
3×3 Array{Int64,2}:
1 1 1
2 2 2
3 3 3
julia> accumulate(+, fill(1, 3, 3), dims=2)
3×3 Array{Int64,2}:
1 2 3
1 2 3
1 2 3
累積的な演算。結果を B に保存 accumulate!(op, B, A; [dims], [init])
julia> x = [1, 0, 2, 0, 3];
julia> y = [0, 0, 0, 0, 0];
julia> accumulate!(+, y, x);
julia> y
5-element Array{Int64,1}:
1
1
3
3
6
julia> A = [1 2; 3 4];
julia> B = [0 0; 0 0];
julia> accumulate!(-, B, A, dims=1);
julia> B
2×2 Array{Int64,2}:
1 2
-2 -2
julia> accumulate!(-, B, A, dims=2);
julia> B
2×2 Array{Int64,2}:
1 -1
3 -1
指定された次元について累積 cumprod(A; dims::Integer)
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> cumprod(a, dims=1)
2×3 Array{Int64,2}:
1 2 3
4 10 18
julia> cumprod(a, dims=2)
2×3 Array{Int64,2}:
1 2 6
4 20 120
イテレーターの累積 cumprod(itr)
julia> cumprod(fill(1//2, 3))
3-element Array{Rational{Int64},1}:
1//2
1//4
1//8
julia> cumprod([fill(1//3, 2, 2) for i in 1:3])
3-element Array{Array{Rational{Int64},2},1}:
[1//3 1//3; 1//3 1//3]
[2//9 2//9; 2//9 2//9]
[4//27 4//27; 4//27 4//27]
julia> cumprod((1, 2, 1))
(1, 2, 2)
julia> cumprod(x^2 for x in 1:3)
3-element Array{Int64,1}:
1
4
36
累積結果を B に保存する cumprod!(B, A; dims::Integer)
累和 cumsum(A; dims::Integer)
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> cumsum(a, dims=1)
2×3 Array{Int64,2}:
1 2 3
5 7 9
julia> cumsum(a, dims=2)
2×3 Array{Int64,2}:
1 3 6
4 9 15
イテレータの累和 cumsum(itr)
julia> cumsum([1, 1, 1])
3-element Array{Int64,1}:
1
2
3
julia> cumsum([fill(1, 2) for i in 1:3])
3-element Array{Array{Int64,1},1}:
[1, 1]
[2, 2]
[3, 3]
julia> cumsum((1, 1, 1))
(1, 2, 3)
julia> cumsum(x^2 for x in 1:3)
3-element Array{Int64,1}:
1
5
14
累和の結果を B に保存 cumsum!(B, A; dims::Integer)
差分 diff(A::AbstractVector),diff(A::AbstractArray; dims::Integer)
julia> a = [2 4; 6 16]
2×2 Array{Int64,2}:
2 4
6 16
julia> diff(a, dims=2)
2×1 Array{Int64,2}:
2
10
julia> diff(vec(a))
3-element Array{Int64,1}:
4
-2
12
配列を繰り返して配列を作る repeat(A::AbstractArray, counts::Integer...)
julia> repeat([1, 2, 3], 2)
6-element Array{Int64,1}:
1
2
3
1
2
3
julia> repeat([1, 2, 3], 2, 3)
6×3 Array{Int64,2}:
1 1 1
2 2 2
3 3 3
1 1 1
2 2 2
3 3 3
文字列を繰り返して文字列を作る repeat(s::AbstractString, r::Integer)
julia> repeat("ha", 3)
"hahaha"
julia> repeat('A', 3)
"AAA"
行列を 180度回転する rot180(A)
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rot180(a)
2×2 Array{Int64,2}:
4 3
2 1
行列を k 回,180度回転する rot180(A, k)
k が偶数なら,copy と同じである。
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rot180(a,1)
2×2 Array{Int64,2}:
4 3
2 1
julia> rot180(a,2)
2×2 Array{Int64,2}:
1 2
3 4
行列を左に 90 度回転する rotl90(A)
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotl90(a)
2×2 Array{Int64,2}:
2 4
1 3
行列を左に 90 度,k 回回転する rotl90(A, k)
k が 4 の倍数ならば,コピーと同じである。
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotl90(a,1)
2×2 Array{Int64,2}:
2 4
1 3
julia> rotl90(a,2)
2×2 Array{Int64,2}:
4 3
2 1
julia> rotl90(a,3)
2×2 Array{Int64,2}:
3 1
4 2
julia> rotl90(a,4)
2×2 Array{Int64,2}:
1 2
3 4
行列を右に 90 度回転する rotr90(A)
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotr90(a)
2×2 Array{Int64,2}:
3 1
4 2
行列を右に 90 度回転する rotr90(A,k)
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotr90(a,1)
2×2 Array{Int64,2}:
3 1
4 2
julia> rotr90(a,2)
2×2 Array{Int64,2}:
4 3
2 1
julia> rotr90(a,3)
2×2 Array{Int64,2}:
2 4
1 3
julia> rotr90(a,4)
2×2 Array{Int64,2}:
1 2
3 4
配列の指定された次元について関数で変換する mapslices(f, A; dims)
julia> a = reshape(Vector(1:16),(2,2,2,2))
2×2×2×2 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
[:, :, 2, 1] =
5 7
6 8
[:, :, 1, 2] =
9 11
10 12
[:, :, 2, 2] =
13 15
14 16
julia> mapslices(sum, a, dims = [1,2])
1×1×2×2 Array{Int64,4}:
[:, :, 1, 1] =
10
[:, :, 2, 1] =
26
[:, :, 1, 2] =
42
[:, :, 2, 2] =
58
行列の最初の次元をイテレートするジェネレータを作る eachrow(A::AbstractVecOrMat)
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> first(eachrow(a))
2-element view(::Array{Int64,2}, 1, :) with eltype Int64:
1
2
julia> collect(eachrow(a))
2-element Array{SubArray{Int64,1,Array{Int64,2},Tuple{Int64,Base.Slice{Base.OneTo{Int64}}},true},1}:
[1, 2]
[3, 4]
行列の2番目の次元をイテレートするジェネレータを作る eachcol(A::AbstractVecOrMat)
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> first(eachcol(a))
2-element view(::Array{Int64,2}, :, 1) with eltype Int64:
1
3
julia> collect(eachcol(a))
2-element Array{SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true},1}:
[1, 3]
[2, 4]
両方の次元をイテレートするジェネレータを作る eachslice(A::AbstractArray; dims)