理化学研究所(理研)革新知能統合研究センター汎用基盤技術研究グループ数理科学チームの桑原知剛研究員、カリフォルニア大学バークレー校のアヌラーク・アンシュ研究員、IBM基礎研究所(米国)のシュリニバーサン・アルナチャラム研究員、マサチューセッツ工科大学のメーディ・ソレイマニファー大学院生の国際共同研究グループは、量子力学に従う多粒子系(量子多体系[1])を特徴付けるエネルギー関数、すなわちハミルトニアンを少ないサンプルデータ数で効率的に学習する新手法を開発しました。
本研究手法は、今後、未知の量子現象の解明や量子ボルツマンマシン[2]をはじめとした量子機械学習[3]への応用が期待できます。
自然界のあらゆる現象は、「シュレディンガー方程式」と呼ばれる量子力学の基礎方程式を解くことで解明できます。現在、この方程式の構築に必要なハミルトニアンは、量子多体系の観測結果から直接学習できるようになっています。しかし、高精度な「ハミルトニアン学習」に必要なサンプルデータ数は分かっていませんでした。
今回、国際共同研究グループは計算機科学的な手法を用いて、ハミルトニアン学習におけるデータサンプル数の必要十分条件は、量子多体系の粒子数Nに対してNα(1/2 < α < 3)であることを明らかにし、同時に少ないデータ数で効率的にハミルトニアン学習を行う方法を具体的に提案しました。
本研究は、科学雑誌『Nature Physics』オンライン版(5月24日付:日本時間5月25日)に掲載されます。
背景
量子力学は現代物理学において最も一般的な基礎理論となっており、半導体や超伝導[4]素材の開発や原子レベルで物質を制御するナノテクノロジーの発達など、近代科学の根幹をなしています。この量子力学の基礎方程式が1926年にエルヴィン・シュレディンガーが提案した「シュレディンガー方程式」であり、
で表されます(ħ:ディラック定数[5]、H:ハミルトニアン、|ψ(t)>:波動関数[6])。自然界の現象は、このシュレディンガー方程式を解くことで原理的に理解することができます。ただし、系のエネルギー関数であるハミルトニアンは対象の量子現象に応じて異なるため、シュレディンガー方程式を解くためには、ハミルトニアンを具体的に決定する必要があります。
どのようにハミルトニアンを決定するのかは、量子力学成立の頃からの重要な問題でした。しかし現在では、量子多体系の観測結果から直接推定することが可能になっており、これを「ハミルトニアン学習」といいます(図1)。ハミルトニアン学習は、量子コンピュータ[7]が正しく動いているかを検証する目的や、量子ボルツマンマシン(量子力学を用いたニューラルネットワークの一種)による機械学習などへの応用も見据えて大きく注目されています。
図1 ハミルトニアン学習
近年の量子テクノロジーの進歩により、粒子一つ一つを個別に測定することが可能になっている。このようにして観測で得られた個々の粒子のデータを用いて、ハミルトニアンを学習する。学習して得られたハミルトニアンを用いてシュレディンガー方程式を立て、それを解くことができれば着目する量子多体系の情報は全て得ることができる。
現在までに、ハミルトニアン学習に関してはさまざまな手法が提案されています。しかし、その多くは発見論的・経験論的な手法であり、学習で得られたハミルトニアンが真に正しいのか否かという理論的な保証はありません(ヒューリスティックな方法論)。特に、量子力学ではさまざまな異なる状態の重ね合わせ[8]が許されており、一度の観測のみでは原理的にハミルトニアンを決定できません。それでは、十分に良い精度でハミルトニアン学習を行うためにはどのくらいの数の観測サンプルがあれば良いのでしょうか。これは計算機科学分野では「サンプル複雑性問題」と呼ばれ、長年の未解決問題となっていました。
そこで国際共同研究グループは、ハミルトニアン学習のサンプル複雑性問題を一般的な量子多体系で解決することを目指しました。
研究手法と成果
国際共同研究グループは、「量子ボルツマン分布」を用いたハミルトニアン学習を考えました。量子ボルツマン分布は量子熱平衡状態[9]とも呼ばれ、ある温度の熱浴(一定の温度を保っている十分大きな環境)に接した量子多体系が長時間の後に到達する典型的な状態を指します。量子ボルツマン分布の性質は、温度とハミルトニアンの性質のみで決定されることが知られています。量子ボルツマン分布にある量子多体系はさまざまな状態の重ね合わせになっていますが、観測によって一つの状態への「波束の収縮[10]」が起こります。どの状態へと収縮するかは、確率的に決定されます。このステップを何度も繰り返して、量子ボルツマン分布からハミルトニアン学習を行うためのサンプルデータを得るという方法です(図2)。
図2 量子ボルツマン分布の観測によるハミルトニアン学習
一定温度の熱浴に接している量子系(上段左側)は、時間が経つと量子ボルツマン分布(上段右側)へと至る。この状態を観測すると波束が収縮し一つのデータが得られる(中段左側)。再び時間が経つと同様の量子ボルツマン分布に至る(中段右側)ので、それを観測すると別の異なるデータが得られる(下段左側)。これを何度も繰り返して、学習のためのサンプルデータを得る。
そして、量子ボルツマン分布の十分統計量[11]が局所的なエネルギーの期待値で与えられることを証明し、ハミルトニアン学習の問題を最大エントロピー法[12]を用いた「最適化問題[13]」の形で表現しました。ここで、局所的なエネルギーの期待値を得るために必要十分なサンプルデータ数は、シャドウ・トモグラフィー[14]と呼ばれる近年の方法論を用いて決定できます。このように定義された最適化問題を解くことでハミルトニアン学習を行います。
学習されたハミルトニアンはサンプルデータ数が有限なために、真のハミルトニアンとの間には統計誤差[15]が生じます。国際共同研究グループは、最適化問題で現れる目的関数に「強い凸性[16]」という性質が成り立てば、学習で得られたハミルトニアンと真のハミルトニアンとの間の誤差を理論的に決定できることを明らかにしました。本研究における最も大きな成果は、量子情報理論、量子多体理論に関するテクニックを駆使して、任意の量子多体系に関して強い凸性を一般的に証明した点にあります。
その結果、ハミルトニアンを精度良く学習するためのデータサンプル数は粒子数Nに対してN3あれば十分であること、データサンプル数がN1/2より少ないと学習は不可能であることが証明できました。これは、ハミルトニアン学習にはNα(1/2 < α < 3)のデータサンプル数が必要十分であることを意味しています。これらの結果から、任意の量子多体系において、ハミルトニアン学習のサンプル複雑性問題を一般に解決することに成功しました。同時に、少ないデータ数で効率的にハミルトニアン学習を行うアルゴリズムを具体的に提案しました。
最新の画像[もっと見る]
- 例年通り大晦日にお礼とお札を求めて 2日前
- 例年通り大晦日にお礼とお札を求めて 2日前
- 例年通り大晦日にお礼とお札を求めて 2日前
- 例年通り大晦日にお礼とお札を求めて 2日前
- 例年通り大晦日にお礼とお札を求めて 2日前
- 変な雲あるなと思っていた 3日前
- 今日いち-2024年12月29日 4日前
- 2024/12/29 🍊というやり方 4日前
- 今日いち-2024年12月29日 5日前
- オリビア・ハッセー死去 5日前