算額(その1126)
四十一 岩手県一関市牧沢 牧沢八幡神社 明治8年(1875)
山村善夫:現存 岩手の算額,昭和52年1月30日,熊谷印刷,盛岡市.
http://www.wasan.jp/yamamura/yamamura.html
キーワード:円4個,二等辺三角形
#Julia, #SymPy, #算額, #和算
二等辺三角形の中に,甲円,乙円,丙円を容れる。甲円と丙円の直径がわかっているときに,乙円の直径を求めよ。
与えられるものと求めるものが違うが,図形としては 算額(その164)と同じである。
二等辺三角形の底辺の長さを 2x,高さを y
甲円の半径と中心座標を r1, (0, r1)
乙円の半径と中心座標を r2, (0, 2r1 + r2)
丙円の半径と中心座標を r3, (x3, y3)
とおき,以下の連立方程式を解く。
include("julia-source.txt")
using SymPy
@syms r1::positive, r2::positive, r3::positive, x3::positive, x::positive, y::positive;
eq1 = x3^2 + (r1 - r3)^2 - (r1 + r3)^2 |> simplify # 黃円と赤円が外接する
eq2 = r2/(y - 2r1 - r2) - r1/(y - r1)
eq3 = x/sqrt(x^2 + y^2) - r1/(y - r1)
eq4 = r3*x - r1*(x - x3); # 三角形の相似
res = solve([eq1, eq2, eq3, eq4], (r2, x3, x, y))[1];
ans_r2 = res[1] |> factor
ans_r2 |> println
ans_r2(r1 => 4/2, r3 => 1/2) * 2 |> println
(r1 - r3)^2/(4*r3)
2.25000000000000
甲円の直径が 4,丙円の直径が 1 のとき,乙円の直径は 2.25 である。
res[2] |> println
res[3] |> println
res[4] |> println
2*sqrt(r1)*sqrt(r3)
2*r1^(3/2)*sqrt(r3)/(r1 - r3)
-8*r1^2*r3/(r1^2 - 6*r1*r3 + r3^2)
全てのパラメータは以下のとおりである。
r1 = 2; r2 = 1.125; r3 = 0.5; x3 = 2; x = 2.6666666666666674; y = 9.142857142857142
function draw(r1, r3, more=false)
pyplot(size=(500, 500), grid=false, aspectratio=1, label="", fontfamily="IPAMincho")
r2 = (r1 - r3)^2/(4*r3)
x3 = 2sqrt(r1*r3)
x = 2r1^(3/2)*sqrt(r3)/(r1 - r3)
y = -8r1^2*r3/(r1^2 - 6r1*r3 + r3^2)
@printf("甲円の直径が %g,丙円の直径が %g のとき,乙円の直径は %g である。\n", 2r1, 2r3, 2r2)
@printf("r1 = %g; r2 = %g; r3 = %g; x3 = %g; x = %g; y = %g\n", r1, r2, r3, x3, x, y)
plot([x, 0, -x, x], [0, y, 0, 0], color=1, lw=0.5)
circle(0, r1, r1, :orange)
circle(0, 2r1 + r2, r2, :black)
circle2(x3, r3, r3)
if more
delta = (fontheight = (ylims()[2]- ylims()[1]) / 500 * 10 * 2) /3 # size[2] * fontsize * 2
hline!([0], color=:gray80, lw=0.5)
vline!([0], color=:gray80, lw=0.5)
point(0, r1, " r1", :orange, :left, :vcenter)
point(0, 2r1 + r2, "2r1+r2", :black, :center, delta=-delta/2)
point(x3, r3, "(x3,r3)", :red, :center, delta=-delta/2)
point(x, 0, " x", :blue, :left, :bottom, delta=delta/2)
point(0, y, " y", :blue, :left, :bottom, delta=delta/2)
end
end;