「昨日(令和6年12月17日)の記事」を書き直します。
(01)
(ⅰ){xの変域}={aさん、bさん、cさん}
(ⅱ) 述語文字F=フランス人である。
であるとして、
① ∃x(Fx)
②(Fa∨Fb∨Fc)
③ あるxはFである。
④(aさんはフランス人であるか、または、bさんはフランス人であるか、または、cさんはフランス人である)。
に於いて、
①=②=③=④ である。
然るに、
(02)
(ⅰ){xの変域}={aさん、bさん、cさん}
(ⅱ) 述語文字F=フランス人である。
であるとして、
⑤ ~∀x(~F)
⑥ ~(~Fa&~Fb&~Fc)
⑦ すべてのxがFでない、というふわけではない。
⑧(aさんがフランス人ではなく、その上、bさんもフランス人ではなく、その上、cさんもフランス人でない)といふことは無い。
に於いて、
⑤=⑥=⑦=⑧ である。
然るに、
(03) (ⅰ)
1 (1) P∨ Q∨ R A
2 (2) ~P&~Q&~R A
1 (3) (P∨ Q)∨R 1結合法則
4 (4) (P∨ Q) A
5 (5) P A
2 (6) ~P 2&E
2 5 (7) P&~P 56&I
5 (8)~(~P&~Q&~R) 27RAA
9 (9) Q A
2 (ア) ~Q 2&E
2 9 (イ) Q&~Q 9ア&I
9 (ウ)~(~P&~Q&~R) 29RAA
4 (エ)~(~P&~Q&~R) 4589ウ∨E
オ(オ) R A
2 (カ) ~R 2&E
2 オ(キ) R&~R オカ&I
オ(ク)~(~P&~Q&~R) 2キRAA
1 (ケ)~(~P&~Q&~R) 34エオク∨E
12 (コ)~(~P&~Q&~R)&
(~P&~Q&~R) 2ケ&I
1 (サ)~(~P&~Q&~R) 2コRAA
(ⅴ)
1 (1) ~(~P&~Q&~R) A
2 (2) ~( P∨ Q∨ R) A
3 (3) P A
3 (4) P∨ Q 3∨I
3 (5) P∨ Q∨ R 34∨I
23 (6) ~( P∨ Q∨ R)&
( P∨ Q∨ R) 25&I
2 (7) ~P 36RAA
8 (8) Q A
8 (9) P∨ Q 8∨I
8 (ア) P∨ Q∨ R 9∨I
2 8 (イ) ~( P∨ Q∨ R)&
( P∨ Q∨ R) 2ア&I
2 (ウ) ~Q 8イ&I
2 (エ) ~P&~Q 7ウ&I
オ(オ) R A
オ(カ) Q∨ R オ∨I
オ(キ) P∨ Q∨ R ∨I
2 オ(ク) ~( P∨ Q∨ R)&
( P∨ Q∨ R) 2キ&I
2 (ケ) ~R オクRAA
2 (コ) ~P&~Q&~R エケ&I
12 (サ) ~(~P&~Q&~R)&
(~P&~Q&~R) 1コ&I
1 (シ)~~( P∨ Q∨ R) 2サRAA
1 (ス) ( P∨ Q∨ R) シDN
従って、
(03)により、
(04)
① P∨ Q∨ R
⑤ ~(~P&~Q&~R)
といふ「命題論理式」に於いて、
①=⑤ は「ド・モルガンの法則」である。
従って、
(04)により、
(05)
P=Fa
Q=Fb
R=Fc
といふ「代入」により、
① ( Fa∨ Fb∨ Fc)
⑤ ~(~Fa&~Fb&~Fc)
といふ「命題論理式に於いて、
①=⑤ は、「ド・モルガンの法則」である。
従って、
(01)~(05)により、
(06)
① ∃x(Fx)
②(Fa∨Fb∨Fc)
③ あるxはFである。
④(aさんはフランス人であるか、または、bさんはフランス人であるか、または、cさんはフランス人である)。
⑤ ~∀x(~F)
⑥ ~(~Fa&~Fb&~Fc)
⑦ すべてのxがFでない、というふわけではない。
⑧(aさんがフランス人ではなく、その上、bさんもフランス人ではなく、その上、cさんもフランス人でない)といふことは無い。
に於いて、
①=②=③=④=⑤=⑥=⑦=⑧ は、「ド・モルガンの法則」である。
従って、
(07)により、
(08)
(ⅰ)
1 (1) ∃x( Fx) A
2 (2) ∀x(~Fx) A
3(3) Fa A
2 (4) ~Fa 1UE
23(5) Fa&~Fa 34&I
3(6)~∀x(~Fx) 25RAA
12 (7)~∀x(~Fx) 13EE
(ⅴ)
1 (1) ~∀x(~Fx) A
2 (2) ~∃x( Fx) A
3(3) Fa A
3(4) ∃x( Fx) 1EI
23(5) ~∃x( Fx)&
∃x( Fx) 24&I
2 (6) ~Fa 35RAA
2 (7) ∀x(~Fx) 6UI
12 (8) ~∀x(~Fx)&
∀x(~Fx) 17&I
1 (9)~~∀x(~Fx) 28RAA
1 (ア) ∀x(~Fx) 9DN
といふ「述語計算」は、「ド・モルガンの法則」である。
従って、
(08)により、
(09)
① ∃x( Fx)=あるxはFである。
⑤ ~∀x(~Fx)=すべてのxがFでない、といふわけではない。
に於いて、
①=⑤ といふ「量化子の関係」は、「ド・モルガンの法則」である。
(01)
(ⅰ)
1 (1)∃x(Fx∨Gx) A
2 (2) Fa∨Ga A
3 (3) Fa A
3 (4)∃x(Fx) 3EI
3 (5)∃x(Fx)∨∃x(Gx) 4∨I
6(6) Ga A
6(7) ∃x(Gx) 6EI
6(8)∃x(Fx)∨∃x(Gx) 7∨I
2 (9)∃x(Fx)∨∃x(Gx) 23568∨I
1 (ア)∃x(Fx)∨∃x(Gx) 129EE
(ⅱ)
1 (1)∃x(Fx)∨∃x(Gx) A
2 (2)∃x(Fx) A
3 (3) Fa A
3 (4) Fa∨Ga 3∨I
3 (5)∃x(Fx∨Gx) 4EI
2 (6)∃x(Fx∨Gx) 235EE
7 (7) ∃x(Gx) A
8(8) Ga A
8(9) Fa∨Ga 8∨I
8(ア) ∃x(Fx∨Gx) 9EI
7 (イ) ∃x(Fx∨Gx) 78アEE
1 (ウ)∃x(Fx∨Gx) 1267イ∨E
従って、
(01)により、
(02)
① ∃x(Fx∨Gx)
② ∃x(Fx)∨∃x(Gx)
に於いて、
①=② である。
従って、
(02)により、
(03)
例へば、
① ある人は(フランス人であるか、または、ドイツ人である)。
② ある人は(フランス人である)か、または、ある人は(ドイツ人である)。
に於いて、
①=② である。
然るに、
(01)により、
(04)
(ⅰ)
1 (1)∃x(Fx∨Gx) A
2 (2) Fa∨Ga A
3 (3) Fa A
3 (4)∃x(Fx) 3EI
3 (5)∃x(Fx)∨∃x(Gx) 4∨I
6(6) Ga A
6(7) ∃x(Gx) 6EI
6(8)∃x(Fx)∨∃x(Gx) 7∨I
2 (9)∃x(Fx)∨∃x(Gx) 23568∨I
1 (ア)∃x(Fx)∨∃x(Gx) 129EE
(ⅱ)
1 (1)∃x(Fx)∨∃x(Gx) A
2 (2)∃x(Fx) A
3 (3) Fa A
3 (4) Fa∨Ga 3∨I
3 (5)∃x(Fx∨Gx) 4EI
2 (6)∃x(Fx∨Gx) 235EE
7 (7) ∃x(Gx) A
8(8) Ga A
8(9) Fa∨Ga 8∨I
8(ア) ∃x(Fx∨Gx) 9EI
7 (イ) ∃x(Fx∨Gx) 78アEE
1 (ウ)∃x(Fx∨Gx) 1267イ∨E
といふ「計算」は、
{xの変域}={a、b、c}
であるとして、
(ⅰ)
1 (1) (Fa∨Ga)∨(Fb∨Gb) ∨(Fc∨Gc) A
1 (2){(Fa∨Ga)∨(Fb∨Gb)}∨(Fc∨Gc) 1結合法則
3 (3){(Fa∨Ga)∨(Fb∨Gb)} A
4 (4) (Fa∨Ga) A
5 (5) Fa A
5 (6) Fa∨Fb 5∨I
5 (7) Fa∨Fb∨Fc 6∨I
5 (8) (Fa∨Fb∨Fc)∨(Ga∨GB∨Gc) 7∨I
9 (9) Ga A
9 (ア) Ga∨Gb 9∨I
9 (イ) Ga∨Gb∨Gc ア∨I
9 (ウ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) イ∨I
4 (エ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) 4589ウ∨E
オ (オ) (Fb∨Gb) A
カ (カ) Fb A
カ (キ) Fa∨Fb カ∨I
カ (ク) Fa∨Fb∨Fc キ∨I
カ (ケ) (Fa∨Fb∨Fc)∨(Ga∨GB∨Gc) ク∨I
コ (コ) Gb A
コ (サ) Ga∨Gb コ∨I
コ (シ) Ga∨Gb∨Gc サ∨I
コ (ス) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) シ∨I
オ (セ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) オカケコス∨E
3 (ソ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) 34エオセ∨E
タ (タ) (Fc∨Gc) A
チ (ツ) Fc A
チ (テ) Fb∨Fc ツ∨I
チ (ト) Fa∨Fb∨Fc テ∨I
チ (ナ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) ト∨I
ニ(ニ) Gc A
ニ(ヌ) Gb∨Gc ニ∨I
ニ(ネ) Ga∨Gb∨Gc ヌ∨I
ニ(ノ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) ネ∨I
タ (ハ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) タチナニノ∨E
1 (ヒ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) 13ソタハ∨E
(ⅱ)
1 (1)(Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc) A
2 (2)(Fa∨Fb∨Fc) A
2 (3)(Fa∨Fb)∨Fc 2結合法則
4 (4)(Fa∨Fb) A
5 (5) Fa A
5 (6) Fa∨Ga 5∨I
5 (7)(Fa∨Ga)∨(Fb∨Gb) 6∨I
5 (8)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 7∨I
9 (9) Fb A
9 (ア) Fb∨Gb 9∨I
9 (イ)(Fa∨Ga)∨(Fb∨Gb) ア∨I
9 (ウ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) イ∨I
4 (エ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 4589ウ∨E
オ (オ) Fc A
オ (カ) Fc∨Gc オ∨I
オ (キ) (Fb∨Gb)∨(Fc∨Gc) カ∨I
オ (ケ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) キ∨I
2 (コ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 34Eオケ∨E
サ (サ) (Ga∨Gb∨Gc) A
サ (シ) (Ga∨Gb)∨Gc A
ス (ス) (Ga∨Gb) A
セ (セ) Ga A
セ (ソ) Fa∨Ga セ∨I
セ (タ)(Fa∨Ga)∨(Fb∨Gb) ソ∨I
セ (チ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) タ∨I
ツ (ツ) Gb A
ツ (テ) Fb∨Gb ツ∨I
ツ (ト)(Fa∨Ga)∨(Fb∨Gb) テ∨I
ツ (ナ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) ト∨I
ス (ニ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) スセチツナ∨E
ヌ(ヌ) Gc A
ヌ(ネ) (Fc∨Gc) ヌ∨I
ヌ(ノ) (Fb∨Gb)∨(Fc∨Gc) ネ∨I
ヌ(ハ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) ノ∨I
サ (ヒ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) サスニヌハ∨E
1 (フ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 12コサヒ∨E
といふ「計算(メチャクチャ、大変である)」に、「等しい」。
従って、
(04)により、
(05)
{xの変域}={a、b、c}
であるとして、
2(2)∃x(Fx)A
3(3) Fa A
といふ「計算」は、
2(2)(Fa∨Fb∨Fc) A
2(3)(Fa∨Fb)∨Fc 2結合法則
4(4)(Fa∨Fb) A
5(5) Fa A
9(9) Fb A
オ(オ) Fc A
といふ「計算」に、「相当」する。
従って、
(06)
{xの変域}={a、b、c}
であるとして、
3(3)Fa A
といふ「仮定」は、「実際」には、
5(5)Fa A
9(9)Fb A
オ(オ)Fc A
といふ「仮定」に、「相当」し、そのため、
連式 ∃x(Fx)├ Fa は妥当とは考えず、aは任意に選ばれているが、与えられたFをもつ対象の1つではないかもしれないから、
この式を受け入れないのである(E.j.レモン 著、論理学初歩、竹尾治一郎・浅野楢英 訳、1973年、149頁)。
といふ、ことになる。
(07)
「簡単」に言ふと、
{xの変域}={a、b、c}
であるとして、
① Fa
② Fb
③ Fc
④(Fa∨Fb∨Fc)≡∃x(Fx)
に於いて、
①├ ④
②├ ④
③├ ④
といふ「3通り」があるため、
④├ ①
といふ「1通り」であるとは「限らず」、そのため、
∃x(Fx)├ Fa は「妥当」とは考えないものの、「条件」を満たす限り、「計算としては同じ」になるため、「便宜的」に、
∃x(Fx)├ Fa であると、「見做してゐる」。
(08)
{xの変域}={a、b、c}
であるとして、
5(5)Fa A
9(9)Fb A
オ(オ)Fc A
といふ「仮定」に、「相当」する所の、
3(3)Fa A
といふ「仮定」に於ける、「Fa」を、「代表的選言項(typical disjunct)」と言ふ。
(01)
この規則(CP)の扱い方は、これまでの規則のそれよりも会得しにくいものであるが、しかしそれに習熟することはがどうしても必要である。
Its working is harder to grasp than that of the earlier rules, but familiarity with it is indispensable.
(E.J.レモン著、論理学初歩、竹尾治一郎、浅野楢英 訳、1973年、20頁)
然るに、
(02)
1 (1) P A
2(2) Q A
12(3) P&Q 12&I
1 (4)Q→P&Q 23CP
従って、
(02)により、
(03)
① P├ Q→P&Q
といふ「推論」、すなはち、「日本語」で言ふと、
① Pなので、Qならば、PであってQである。
といふ「推論」は「妥当」である。
従って、
(03)により、
(04)
① Pなので、Qならば、PであってQである。
に於いて、
P=原さんは日本人である。
Q=原さんは女性 である。
として、
① 原さんは日本人なので、原さんが女性であるならば、原さんは日本人の女性である。
といふ「推論」は「妥当」である。
然るに、
(05)
1 (1) P→ Q A
2 (2) ~Q A
3(3) P A
1 3(4) Q 13MPP
123(5) ~Q&Q 24&I
12 (6)~P 35RAA
1 (7)~Q→~P 26CP
従って、
(05)により、
(06)
② P→Q├ ~Q→~P
といふ「推論」、すなはち、「日本語」で言ふと、
② PならばQなので、QでないならばPでない。
といふ「推論」は「妥当」である。
従って、
(06)により、
(07)
② P→Q├ ~Q→~P
に於いて、
P=原さんは東京都民である。
Q=原さんは日本人 である、
として、
② 原さんが東京都民であるならば、原さんは日本人なので、原さんが日本人でないならば、原さんは東京都民ではない。
といふ「推論」は「妥当」である。
従って、
(03)(07)により、
(08)
① P├ Q→P&Q
② P→Q├ ~Q→~P
といふ「推論」の「代入例(substitution instances)」として、
① 原さんは日本人なので、原さんが女性であるならば、原さんは日本人の女性である。
② 原さんが東京都民であるならば、原さんは日本人なので、原さんが日本人でないならば、原さんは東京都民ではない。
といふ「推論」は「妥当」であるが、
① 原さんは日本人なので、原さんが女性であるならば、原さんは日本人の女性である。
② 原さんが東京都民であるならば、原さんは日本人なので、原さんが日本人でないならば、原さんは東京都民ではない。
といふ「推論」が「正しい」ことは、「当然(当り前)」である。
従って、
(08)により、
(09)
① P├ Q→P&Q
② P→Q├ ~Q→~P
といふ「論理式」が「正しい」ことは、「当然(常識)」である。
従って、
(02)~(09)により、
(10)
① 原さんは日本人なので、原さんが女性であるならば、原さんは日本人の女性である。
② 原さんが東京都民であるならば、原さんは日本人なので、原さんが日本人でないならば、原さんは東京都民ではない。
といふ「日本語」で考へれば、
(ⅰ)
1 (1) P A
2(2) Q A
12(3) P&Q 12&I
1 (4)Q→P&Q 23CP
(ⅱ)
1 (1) P→ Q A
2 (2) ~Q A
3(3) P A
1 3(4) Q 13MPP
123(5) ~Q&Q 24&I
12 (6)~P 35RAA
1 (7)~Q→~P 26CP
といふ「命題計算(Propsitional Calculus)」が「正しい」ことは、「疑ふ余地が無い」。
従って、
(01)(10)により、
(11)
「E.J.レモン」とは異なり、「ブロガー自身」は、
この規則(CP)の扱い方は、他の規則のそれよりも会得しにくいものである。
Its working is harder to grasp than that of the other rules.
といふ風には、思ってゐない。
(01)
「すべてのフランス人は寛大である」は一種の条件文として適切に記号化されるので、これと同化(assimilation)してしまって、
「幾らかのフランス人は寛大である」を、正しく、
∃x(Fx&Gx)と記号化するかわりに、むしろ、
∃x(Fx→Gx)とするのは、よくある間違いである。しかし、
∃x(Fx→Gx)は、
それがフランス人であるならば、寛大であるようなものが存在することを主張するのであって、
これは、かりにフランス人が存在しないとしても真であろう。しかるに、
「幾らかのフランス人は寛大である」は決してそうではない。
(E.J.レモン 著、竹尾治一郎・浅野 楢英 訳、1973年、124頁)
然るに、
(02)
(ⅰ)
1 (1) ∃x(Fx→Gx) A
2 (2) Fa→Ga A
2 (3) ~Fa∨Ga 2含意の定義
4 (4) ~Fa A
5 (5) ∀x(Fx) A
5 (6) Fa 5UE
45 (7) ~Fa&Fa 46&I
4 (8)~∀x(Fx) 57RAA
4 (9)~∀x(Fx)∨∃x(Gx) 8∨I
ア(ア) Ga A
ア(イ) ∃x(Gx) アEI
ア(ウ)~∀x(Fx)∨∃x(Gx) イ∨I
2 (エ)~∀x(Fx)∨∃x(Gx) 249アウ∨E
1 (オ)~∀x(Fx)∨∃x(Gx) 12エEE
1 (エ) ∀x(Fx)→∃x(Gx) オ含意の定義
(ⅱ)
1 (1) ∀x(Fx)→∃x(Gx) A
1 (2)~∀x(Fx)∨∃x(Gx) 1含意の定義
3 (3)~∀x(Fx) A
4 (4) Fa A
4 (5) ∀x(Fx) 4UI
34 (6)~∀x(Fx)&∀x(Fx) 35&I
3 (7) ~Fa 4RAA
3 (8) ~Fa∨Ga 7∨I
9 (9) ∃x(Gx) A
ア(ア) Ga A
ア(イ) ~Fa∨Ga ア∨I
9 (ウ) ~Fa∨Ga 9アイEE
1 (エ) ~Fa∨Ga 2389ウ∨E
1 (オ) Fa→Ga エ含意の定義
1 (カ) ∃x(Fx→Gx) オEI
然るに、
(03)
(ⅱ)
1 (1) ∀x( Fx)→∃x(Gx) A
1 (2) ~∀x( Fx)∨∃x(Gx) 1含意の定義
3 (3) ~∀x( Fx) A
4 (4) ~∃x(~Fx) A
5 (5) ~Fa A
5 (6) ∃x(~Fx) 5EI
45 (7) ~∃x(~Fx)&∃x(~Fx) 46&I
4 (8) ~~Fa 57RAA
4 (9) Fa 8DN
4 (ア) ∀x( Fx) 9UI
34 (イ) ~∀x( Fx)&∀x( Fx) 3ア&I
3 (ウ)~~∃x(~Fx) 4イRAA
3 (エ) ∃x(~Fx) ウDN
3 (オ) ∃x(~Fx)∨∃x(Gx) エ∨I
カ(カ) ∃x(Gx) A
カ(キ) ∃x(~Fx)∨∃x(Gx) カ∨I
1 (ク) ∃x(~Fx)∨∃x(Gx) 23オカキ∨E
(ⅲ)
1 (1) ∃x(~Fx)∨∃x(Gx) A
2 (2) ∃x(~Fx) A
3 (3) ∀x( Fx) A
4 (4) ~Fa A
3 (5) Fa 3UE
34 (6) ~Fa&Fa 45&I
4 (7)~∀x( Fx) 36RAA
2 (8)~∀x( Fx) 247EE
2 (9)~∀x( Fx)∨∃x(Gx) 8∨I
ア(イ) ∃x(Gx) A
ア(ウ)~∀x( Fx)∨∃x(Gx) イ∨I
1 (エ)~∀x( Fx)∨∃x(Gx) 129アウ∨E
1 (オ) ∀x( Fx)→∃x(Gx) エ含意の定義
従って、
(02)(03)により、
(04)
① ∃x( Fx→Gx)
② ∀x( Fx)→∃x(Gx)
③ ∃x(~Fx)∨∃x(Gx)
に於いて、
①=②=③ である。
従って、
(04)により、
(05)
① それがフランス人であるならば、 寛大であるようなものが存在する。
② それがフランス人であるならば、その中に、 寛大であるようなものが存在する。
③ フランス人でないものが存在するか、または、寛大であるようなものが存在する。
に於いて、
①=②=③ である。
然るに、
(01)(05)により、
(06)
③ フランス人でないxが存在するか、または、寛大であるxがする。
といふのであれば、
③ これは、かりにフランス人が存在しないとしても真であろう。
従って、
(01)(04)(06)により、
(07)
「幾らかのフランス人は寛大である(Some French are generous))。」といふ「日本語(英語)」を、
∃x(Fx&Gx)と記号化するかわりに、むしろ、
∃x(Fx→Gx)とするのは、「よくある間違い(Common mistake)」である。
といふ、「E.J.レモンの説明」は、「正しい」。
然るに、
(08)
1 (1) ∀x(Fx)→∃x(Gx) A
1 (2)~∀x(Fx)∨∃x(Gx) 1含意の定義
3 (3)~∀x(Fx) A
4 (4) Fa A
4 (5) ∀x(Fx) 4UI
34 (6)~∀x(Fx)&∀x(Fx) 35&I
3 (7) ~Fa 4RAA
3 (8) ~Fa∨Ga 7∨I
9 (9) ∃x(Gx) A
ア (ア) Ga A
ア (イ) ~Fa∨Ga ア∨I
9 (ウ) ~Fa∨Ga 9アイEE
1 (エ) ~Fa∨Ga 2389ウ∨E
1 (オ) Fa→Ga エ含意の定義
カ (カ) ∃x(Fx) A
キ(キ) Fa A
1 キ(ク) Ga カキMPP
1 キ(ク) Fa&Ga キク&I
1 キ(ケ) ∃x(Fx&Gx) クEI
1 カ (コ) ∃x(Fx&Gx) カキケEE
従って、
(08)により、
(09)
(ⅰ)∀x(Fx)→∃x(Gx)。然るに、
(ⅱ)∃x(Fx)。従って、
(ⅲ)∃x(Fx&Gx)。
といふ「推論」、すなはち、
(ⅰ)すべてのxがフランス人であるならば、あるxは寛大である。然るに、
(ⅱ)あるxはフランス人である。従って、
(ⅲ)あるxはフランス人であって、寛大である。
といふ「推論」、すなはち、
(ⅰ)それがフランス人であるならば、その中に、寛大であるようなものが存在する。然るに、
(ⅱ)フランス人であるものが、存在する。従って、
(ⅲ)フランス人のあるものは、寛大である。
といふ「推論」は、「妥当」である。
―(20)以下に、「昨日(令和6年11月13日)の記事」の「続き」を書きます。―
然るに、
(17)
(ⅰ)
1(1) P&Q A
1(2) P 1&E
(3)(P&Q)→P 12CP
(ⅱ)
1(1)P A
1(2)P∨Q 1∨I
(3)P→(P∨Q) 12CP
然るに、
(18)
(ⅰ)
1(1) ~{ (P&Q)→P} A
1(2) ~{~(P&Q)∨P} 含意の定義
1(3) (P&Q)&~P 2ド・モルガンの法則
1(4) P&Q 3&E
1(5) P 4&E
1(6) ~P 3&E
1(7) P&~P 56&I
(8)~~{ (P&Q)→P} 17RAA
(9) (P&Q)→P 8DN
(ⅱ)
1(1) ~{ P→(P∨Q)} A
1(2) ~{~P∨(P∨Q)} 1含意の定義
1(3) P&~(P∨Q) 2ド・モルガンの法則
1(4) P 3&E
1(5) ~(P∨Q) 3&E
1(6) ~P&~Q 5ド・モルガンの法則
1(7) ~P 6&E
1(8) P&~P 47&I
(9)~~{ P→(P∨Q)} 18RAA
(ア) P→(P∨Q) 9DN
従って、
(16)(17)(18)により、
(19)
①(P&Q)→P
② P→(P∨Q)
である所の、
①「連言除去」
②「選言導入」
を含めて、「恒真式(トートロジー)」とは、
「否定をすると、矛盾が生じるため、背理法(RAA)により、仮定の数が0になる」所の「連式の結論」である。
然るに、
(20)
① ~{(P&Q)→P}
② ~{P→(P∨Q)}
ではなく、
③ ~{(P∨Q)→P}
④ ~{P→(P&Q)}
の場合は、
(ⅲ)
1(1)~{ (P∨Q)→ P} A
1(2)~{~(P∨Q)∨ P} 含意の定義
1(3) (P∨Q)&~P 2ド・モルガンの法則
1(4) P∨Q 3&E
からは、
1(5) P 4&E
1(6) ~P 3&E
1(7) P&~P 56&I
とはならないし、
(ⅳ)
1(1)~{ P→ (P&Q)} A
1(2)~{~P∨ (P&Q)} 1含意の定義
1(3) P&~(P&Q) 2ド・モルガンの法則
1(4) P 3&E
1(5) ~(P&Q) 3&E
1(6) ~P∨~Q 5ド・モルガンの法則
からは、
1(7) ~P 6&E
1(8) P&~P 47&I
とはならない。
従って、
(19)(20)により、
(21)
① ~{(P&Q)→P}
② ~{P→(P∨Q)}
の場合、すなわち、
①「連言除去」
②「選言導入」
の場合は、「否定をすると、矛盾が生じる」ため、「背理法(RAA)により、仮定の数が0になる」所の「連式の結論」であるが、
③ ~{(P∨Q)→P}
④ ~{P→(P&Q)}
の場合は、「否定しても、矛盾が生じない」ため、「背理法(RAA)により、仮定の数が0になる」所の「連式の結論」ではない。
従って、
(21)により、
(22)
③ ~{(P∨Q)→P}
④ ~{P→(P&Q)}
は、「偽(矛盾)」ではないため、
③(P∨Q)→P
④ P→(P&Q)
は、「真」ではない。
従って、
(22)により、
(23)
③(P∨Q)├ P
④ P├ (P&Q)├ Q
という「推論」、すなわち、
③ Pまたは、Qである。従って、Pである。
④ Pである。従って、PであってQである。従って、Qである。
という「推論」は、「妥当」ではない。
従って、
(23)により、
(24)
例えば、
P=男性である。
Q=女性である。
として、
③ 男性か、または、女性である。従って、男性である。
④ 男性である。従って、女性である。
という「推論」は、「妥当」ではない。
然るに、
(25)
話は変わるものの、
1948年、ゲーデルは、アメリカ市民権を取得する。このとき、保証人に名を連ねたのがアインシュタインである。当時、アメリカ市民権を取得するには、米国憲法に関する面接試験が課せられていた。そのため、ゲーデルは、合衆国憲法を一から勉強しはじめた。面接当日、ゲーデルは「合衆国憲法が独裁国家に合法的に移行する可能性を秘めていることを発見した」とアインシュタインたちに語り、彼らを当惑させた。そして、移民審査をする判事から「あなたは、独裁国家(ナチス・ドイツに併合されたオーストリア)から来られたのですね。我がアメリカ合衆国ではそのようなことは起きませんから、安心してください」と言われた際、ゲーデルは、即座に「それどころか私は、いかにしてそのようなことが起こりうるのかを証明できるのです」と答えた。そのため、その場に付き添っていたアインシュタインたちが慌てて場を取り繕うという一幕があった(ウィキペディア)。
然るに、
(26)
連立方程式を解かせると間違った答えを出したり、定理の証明を求めると奇妙な間違い計算を続けて、最後に「証明ができました」と言ったりする。使い物にならない。数学だけではない。形式論理の適用でも間違えることがある。例えば、逆命題と対偶命題を混同し、誤った結論を出すことがある。こうした問題はChatGPTだけでなく、そのもとになって大規模言語モデルLLMに共通する問題だ(野口悠紀雄、生成AI革命、2024年、299頁)。
従って、
(25)(26)により、
(27)
(ⅰ)「(超一流の)論理学者」は、「アメリカ合衆国憲法の瑕疵を、証明出来る」が、
(ⅱ)「(論理が苦手)なAI」は、「アメリカ合衆国憲法の瑕疵を、証明出来ない」。
という風に、思われる。
(01)
(ⅰ)
1 (1) P→ Q A
2 (2) P&~Q A
2 (3) P 2&E
12 (4) Q 13MPP
2 (5) ~Q 2&E
12 (6) Q&~Q 45&I
1 (7)~(P&~Q) 26RAA
(ⅱ)
1 (1)~(P&~Q) A
2 (2) P A
3(3) ~Q A
23(4) P&~Q 23&I
123(5)~(P&~Q)&
(P&~Q) 14&I
12 (6) ~~Q 35RAA
12 (7) Q 6DN
1 (8) P→ Q 27CP
(02)
(ⅱ)
1 (1) ~(P&~Q) A
2 (2) ~(~P∨Q) A
3 (3) ~P A
3 (4) ~P∨Q 3∨I
23 (5) ~(~P∨Q)&
(~P∨Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) Q A
8(9) ~P∨Q 8∨I
2 8(ア) ~(~P∨Q)&
(~P∨Q) 29&I
2 (イ) ~Q 8アRAA
2 (ウ) P&~Q 7イ&I
12 (エ) ~(P&~Q)&
(P&~Q) 1ウ&I
1 (オ)~~(~P∨Q) 2エRAA
1 (カ) ~P∨Q オDN
(ⅲ)
1 (1) ~P∨Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6)~(P&~Q) 25RAA
7(7) Q A
2 (8) ~Q 2&E
2 7(9) Q&~Q 78&I
7(ア)~(P&~Q) 29RAA
1 (イ)~(P&~Q) 1367ア∨E
従って、
(01)(02)により、
(03)
① P→ Q
② ~(P&~Q)
③ ~P∨ Q
に於いて、
①=② であって、
②=③ であって、それ故、
①=②=③ である。
従って、
(03)により、
(04)
Q=P であるとして、
① P→ P
② ~(P&~P)
③ ~P∨ P
に於いて、
①=② であって、
②=③ であって、それ故、
①=②=③ である。
従って、
(04)により、
(05)
① P→ P
② ~(P&~P)
③ ~P∨ P
に於いて、すなわち、
①「同一律(トートロジー)」
②「矛盾律(トートロジー)」
③「排中律(トートロジー)」
に於いて、
①=② であって、
②=③ であって、それ故、
①=②=③ である。
然るに、
(06)
(ⅰ)
1(1)P A
(2)P→P 11CP
(ⅱ)
1(1) P&~P A
(2)~(P&~P) 11RAA
(ⅲ)
1 (1) ~(~P∨P) A
2(2) ~P A
2(3) ~P∨P 2∨I
12(4) ~(~P∨P)&
(~P∨P) 13&I
1 (5) ~~P 24RAA
1 (6) P 5DN
1 (7) ~P∨P 6∨I
1 (8) ~(~P∨P)&
(~P∨P) 61&I
(9)~~(~P∨P) 18RAA
(ア) ~P∨P 9DN
従って、
(06)により、
(07)
①├ P→ P
②├ ~(P&~P)
③├ ~P∨ P
という「連式」に対する、
① P→ P
② ~(P&~P)
③ ~P∨ P
という「論理式」に於いて、
① は、「仮定の数がゼロである所の、連式の結論」であって、
② も、「仮定の数がゼロである所の、連式の結論」であって、
③ も、「仮定の数がゼロである所の、連式の結論」である。
然るに、
(05)により、
(08)
① P→ P
② ~(P&~P)
③ ~P∨ P
に於いて、
①=②=③ であるため、それらの「否定」である所の、
① ~{ P→ P}
② ~{~(P&~P)}
③ ~{ ~P∨ P}
に於いても、
①=②=③ である。
然るに、
(09)
(ⅱ)
1(1) ~{~(P&~P)} A
1(2) P&~P 1DN
(3)~~{~(P&~P)} 12RAA(背理法)
(4) ~(P&~P) 3DN
従って、
(07)(08)(09)により、
(10)
① P→ P
② ~(P&~P)
③ ~P∨ P
に於いて、
①=②=③ である所の「恒真式(トートロジー)」は、
(a)「否定」をすると、
(b)「矛盾」が生じるが故に、
(c)「背理法(RAA)」により、
(d)「仮定の数がゼロである所の、連式の結論」である。
然るに、
(11)
(ⅰ)
1 (1)P→Q A
2(2)P A
12(3) Q 12MPP
(ⅱ)
1 (1)P→Q A
2(2)P A
12(3) Q 12MPP
1 (4)P→Q 23CP
(ⅲ)
1 (1) P→Q A
2(2) P A
12(3) Q 12MPP
1 (4) P→Q 23CP
(5)(P→Q)→(P→Q) 14CP
(ⅳ)
1 (1) P→Q A
2(2) P A
12(3) Q 12MPP
2(4)(P→Q)→Q 13CP
(5) P→((P→Q)→Q) 14CP
従って、
(11)により、
(12)
① P→Q,P├ Q
② P→Q├ P→Q
③ ├(P→Q)→(P→Q)
④ ├ P→((P→Q)→Q)
という「連式(sequents)」は「妥当」である。
従って、
(12)により、
(13)
① P→Q,P├ Q
② P→Q├ P→Q
③ ├(P→Q)→(P→Q)
④ ├ P→((P→Q)→Q)
という「連式」に対する、
① Q
② P→Q
③(P→Q)→(P→Q)
④ P→((P→Q)→Q)
という「論理式」に於いて、
① は、「仮定の数が1である所の、連式の結論」であって、
② は、「仮定の数が2である所の、連式の結論」であって、
③ は、「仮定の数が0である所の、連式の結論」であって、
④ は、「仮定の数が0である所の、連式の結論」である。
然るに、
(14)
(ⅲ)
1(1) ~{ (P→Q)→( P→Q)} A
1(2) ~{~(P→Q)∨( P→Q)} 1含意の定義
1(3) ~{~(P→Q)∨(~P∨Q)} 2含意の定義
1(4) P→Q&~(~P∨Q) 3ド・モルガンの法則
1(5) P→Q 4&E
1(6) ~(~P∨Q) 4&E
1(7) P&~Q 6ド・モルガンの法則
1(8) P 7&E
1(9) Q 58MPP
1(ア) ~Q 7&E
1(イ) Q&~Q 9ア&I
(ウ)~~{ (P→Q)→( P→Q)} 1イRAA
(エ) (P→Q)→( P→Q) ウDN
(ⅳ)
1(1) ~{ P→( (P→Q)→ Q)} A
1(2) ~{~P∨( (P→Q)→ Q)} 1含意の定義
1(3) ~{~P∨(~(P→Q)∨ Q)} 2含意の定義
1(4) P&~(~(P→Q)∨ Q) 3ド・モルガンの法則
1(5) P 4&E
1(6) ~(~(P→Q)∨ Q) 5&E
1(7) (P→Q)&~Q 6ド・モルガンの法則
1(8) P→Q 7&E
1(9) Q 58MPP
1(ア) ~Q 7&E
1(イ) Q&~Q 9ア&I
(ウ)~~{ P→( (P→Q)→ Q)} 1イRAA
(エ) P→( (P→Q)→ Q) ウDN
従って、
(13)(14)により、
(15)
③(P→Q)→(P→Q)
④ P→((P→Q)→Q)
に於いて、
③ は、「仮定の数が0である所の、連式の結論」であって、
④ は、「仮定の数が0である所の、連式の結論」である。
ということは、
③ は、「否定をすると、矛盾が生じるため、背理法(RAA)により、仮定の数が0になる。」
④ は、「否定をすると、矛盾が生じるため、背理法(RAA)により、仮定の数が0になる。」
ということを、「意味」している。
従って、
(10)(15)により、
(16)
「番号」を付け直すと、
① P→ P
② ~(P&~P)
③ ~P∨ P
④ (P→Q)→(P→Q)
⑤ P→((P→Q)→Q)
という「恒真式(トートロジー)」は、すべて、
②「否定をすると、矛盾が生じるため、背理法(RAA)により、仮定の数が0になる」所の「連式の結論」である。
然るに、
(17)
(ⅰ)
1(1) P&Q A
1(2) P 1&E
(3)(P&Q)→P 12CP
(ⅱ)
1(1)P A
1(2)P∨Q 1∨I
(3)P→(P∨Q) 12CP
然るに、
(18)
(ⅰ)
1(1) ~{ (P&Q)→P} A
1(2) ~{~(P&Q)∨P} 含意の定義
1(3) (P&Q)&~P 2ド・モルガンの法則
1(4) P&Q 3&E
1(5) P 4&E
1(6) ~P 3&E
1(7) P&~P 56&I
(8)~~{ (P&Q)→P} 17RAA
(9) (P&Q)→P 8DN
(ⅱ)
1(1) ~{ P→(P∨Q)} A
1(2) ~{~P∨(P∨Q)} 1含意の定義
1(3) P&~(P∨Q) 2ド・モルガンの法則
1(4) P 3&E
1(5) ~(P∨Q) 3&E
1(6) ~P&~Q 5ド・モルガンの法則
1(7) ~P 6&E
1(8) P&~P 47&I
(9)~~{ P→(P∨Q)} 18RAA
(ア) P→(P∨Q) 9DN
従って、
(16)(17)(18)により、
(19)
①(P&Q)→P
② P→(P∨Q)
である所の、
①「連言除去」
②「選言導入」
を含めて、「恒真式(トートロジー)」とは、
②「否定をすると、矛盾が生じるため、背理法(RAA)により、仮定の数が0になる」所の「連式の結論」である。
(01)
命題計算では、パースの法則は ((P→Q)→P)→P のことを言う。この意味するところを書き出すと、命題Pについて、命題Qが存在して、「PならばQ」からPが真であることが従うときには、Pは真でなければならないとなる。とりわけ、Qとして偽を選んだ場合には、Pから偽が従うときは常にPが真であるならば、Pは真であるとなる。パースの法則は直観論理や中間論理では成立せず、演繹定理だけからでは導くことができない(ウィキペディア)。
然るに、
(02)
5 原始的規則あるいは導出された規則を、既にに証明されたどのような連式あるいは定理とでもともに用いて、証明せよ。
5 Using Primitive or deriverd rulues, together with any sequents or theorems already Proved,Prove.
(E.J.レモン著、竹尾治一郎・浅野楢英 訳、論理学初歩、1973年、80頁)
(c)
1 (1) (P→Q)→P A
1 (2) (~P∨Q)→P 1含意の定義
1 (3)~(~P∨Q)∨P 2含意の定義
4 (4)~(~P∨Q) A
4 (5) P&~Q 4ド・モルガンの法則
4 (6) P 5&E
7(7) P A
1 (8) P 14677∨E
(9)((P→Q)→P)→P 18CP
従って、
(01)(02)により、
(03)
「含意の定義、ド・モルガンの法則」を用いれば、「パースの法則」は、「9行の計算」で、「証明」出来る。
然るに、
(04)
(ⅰ)
1 (1) P→ Q A
2 (2) P&~Q A
2 (3) P 2&E
12 (4) Q 13MPP
2 (5) ~Q 2&E
12 (6) Q&~Q 45&I
1 (7) ~(P&~Q) 26RAA
8 (8) ~(~P∨Q) A
9 (9) ~P A
9 (ア) ~P∨Q 9∨I
89 (イ) ~(~P∨Q)&
(~P∨Q) 8ア&I
8 (ウ) ~~P 9イRAA
8 (エ) P ウDN
オ(オ) Q A
オ(カ) ~P∨Q オ∨I
8 オ(キ) ~(~P∨Q)&
(~P∨Q) 8オ&I
8 (ク) ~Q オキRAA
8 (ケ) P&~Q エク&I
1 8 (コ) ~(P&~Q)&
(P&~Q) 7ケ&I
1 (サ)~~(~P∨Q) 8コRAA
1 (シ) ~P∨Q サDN
(ⅱ)
1 (1) ~P∨Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6) ~(P&~Q) 25RAA
7 (7) Q A
2 (8) ~Q 2&E
2 7 (9) Q&~Q 78&I
7 (ア) ~(P&~Q) 29RAA
1 (イ) ~(P&~Q) 1367ア∨E
ウ (ウ) P A
エ(エ) ~Q A
ウエ(オ) P&~Q ウエ&I
1 ウエ(カ) ~(P&~Q)&
(P&~Q) 6オ&I
1 ウ (キ) ~~Q エカRAA
1 ウ (ク) Q キDN
1 (ケ) P→ Q ウクCP
従って、
(01)(04)により、
(05)
① P→Q
② ~P∨Q
に於いて、
①=② は「含意の定義」であって、「E.J.レモンの原始的規則(Primitive rules)」で「証明」出来る。
然るに、
(04)により、
(06)
(ⅰ)
1 (7) ~(P&~Q) 26RAA
8 (8) ~(~P∨Q) A
9 (9) ~P A
9 (ア) ~P∨Q 9∨I
89 (イ) ~(~P∨Q)&
(~P∨Q) 8ア&I
8 (ウ) ~~P 9イRAA
8 (エ) P ウDN
オ(オ) Q A
オ(カ) ~P∨Q オ∨I
(ⅱ)
1 (1) ~P∨Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6) ~(P&~Q) 25RAA
7 (7) Q A
2 (8) ~Q 2&E
2 7 (9) Q&~Q 78&I
7 (ア) ~(P&~Q) 29RAA
1 (イ) ~(P&~Q) 1367ア∨E
従って、
(01)(06)により、
(07)
① ~(P&~Q)
② ~P∨ Q
に於いて、
①=② は「ド・モルガンの法則」であって、「E.J.レモンの原始的規則(Primitive rules)」で「証明」出来る。
然るに、
(08)
自然演繹(しぜんえんえき、英: Natural deduction)は、「自然な」ものとしての論理的推論の形式的モデルを提供する証明理論の手法であり、哲学的論理学の用語である。自然演繹論理のあるバージョンには、公理が存在しない。ジョン・レモンが開発した体系Lは、証明の構文規則に関する次のような「10個の原始的規則(Primitive rules)」だけを持つ。
(ウィキペディア改)
従って、
(03)(05)(07)(08)により、
(09)
「パースの法則」は、「自然演繹(ジョン・レモンが開発した体系L)」に於ける、「10個の原始的規則(Primitive rules)」で、「証明」出来る。
従って、
(01)(09)により、
(10)
命題計算では、「パースの法則」は ((P→Q)→P)→P のことを言うものの、「パースの法則」は 「自然な」ものとしての「論理的推論の形式的モデルを提供する証明理論の手法」によって、「証明」出来る。
(01)
(ⅰ)
1 (1) P→ Q A
2 (2) P&~Q A
2 (3) P 2&E
12 (4) Q 13MPP
2 (5) ~Q 2&E
12 (6) Q&~Q 45&I
1 (7)~(P&~Q) 26RAA
(ⅱ)
1 (1)~(P&~Q) A
2 (2) P A
3(3) ~Q A
23(4) P&~Q 23&I
123(5)~(P&~Q)&
(P&~Q) 14&I
12 (6) ~~Q 35RAA
12 (7) Q 6DN
1 (8) P→ Q 27CP
従って、
(01)により、
(02)
① P→ Q
② ~(P&~Q)
に於いて、
①=② である。
(03)
(ⅱ)
1 (1) ~(P&~Q) A
2 (2) ~(~P∨Q) A
3 (3) ~P A
3 (4) ~P∨Q 3∨I
23 (5) ~(~P∨Q)&
(~P∨Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) Q A
8(9) ~P∨Q 8∨I
2 8(ア) ~(~P∨Q)&
(~P∨Q) 29&I
2 (イ) ~Q 8アRAA
2 (ウ) P&~Q 7イ&I
12 (エ) ~(P&~Q)&
(P&~Q) 1ウ&I
1 (オ)~~(~P∨Q) 2エRAA
1 (カ) ~P∨Q オDN
(ⅲ)
1 (1) ~P∨Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6)~(P&~Q) 25RAA
7(7) Q A
2 (8) ~Q 2&E
2 7(9) Q&~Q 78&I
7(ア)~(P&~Q) 29RAA
1 (イ)~(P&~Q) 1367ア∨E
従って、
(03)により、
(04)
② ~(P&~Q)
③ ~P∨ Q
に於いて、
②=③ である(ド・モルガンの法則)。
従って、
(03)(04)により、
(05)
① P→ Q
② ~(P&~Q)
③ ~P∨ Q
に於いて、すなはち、
① Pであるならば、Qである。
②(Pであって、Qでない)ということはない。
③ Pでないか、または、Qである。
に於いて、
①=②=③ である。
従って、
(05)により、
(06)
① P→ Q
② ~(P&~Q)
③ ~P∨ Q
に於いて、
P=Q であるとして、
① P→ P
② ~(P&~P)
③ ~P∨ P
に於いて、すなはち、
①「同一律(恒真式)」
②「矛盾律(恒真式)」
③「排中律(恒真式)」
に於いて、
①=②=③ である。
然るに、
(07)
(ⅰ)
1(1)P A
(2)P→P 11CP
(ⅱ)
1(1) P&~P A
(2)~(P&~P) 11RAA
(ⅲ)
1 (1) ~(~P∨P) A
2(2) ~P A
2(3) ~P∨P 2∨I
12(4) ~(~P∨P)&
(~P∨P) 13&I
1 (5) ~~P 24RAA
1 (6) P 5DN
1 (7) ~P∨P 6∨I
1 (8) ~(~P∨P)&
(~P∨P) 61&I
(9)~~(~P∨P) 18RAA
(ア) ~P∨P 9DN
従って、
(06)(07)により、
(08)
①├ P→ P
②├ ~(P&~P)
③├ ~P∨ P
という「連式」に於いて、
①=②=③ である。
然るに、
(09)
①├ P→ P
②├ ~(P&~P)
③├ ~P∨ P
という「連式」に対する、
① P→ P
② ~(P&~P)
③ ~P∨ P
という「論理式」に於いて、
① は、「仮定の数がゼロである所の、連式の結論」であって、
② も、「仮定の数がゼロである所の、連式の結論」であって、
③ も、「仮定の数がゼロである所の、連式の結論」である。
従って、
(06)(09)により、
(10)
①「同一律(恒真式)」
②「矛盾律(恒真式)」
③「排中律(恒真式)」
に於いて、
①=②=③ であって、尚且つ、
① は、「仮定の数がゼロである所の、連式の結論」であって、
② も、「仮定の数がゼロである所の、連式の結論」であって、
③ も、「仮定の数がゼロである所の、連式の結論」である。
従って、
(10)により、
(11)
(ⅰ)「恒真式(トートロジー)」とは、
(ⅱ)「仮定の数がゼロである所の、連式の結論」である。
然るに、
(12)
① P→P(恒真式)
に対して、
① P=(P&Q)
といふ「代入(置き換え)」を行うと、
①(P&Q)→(P&Q)
は、「恒真式(同一律)」である。
然るに、
(13)
(ⅰ)
1 (1)(P&Q)→(P&Q) A
2 (2) P A
3(3) Q A
23(4)(P&Q) 23&I
123(5) (P&Q) 14MPP
12 (6) (Q→(P&Q)) 35CP
1 (7) P→(Q→(P&Q)) 26CP
(ⅱ)
1 (1) P→(Q→(P&Q)) A
2(2)(P&Q) A
2(3) P 2&E
12(4) Q→(P&Q) 13MPP
2(5) Q 2&E
12(6) (P&Q) 45MPP
1 (7)(P&Q)→(P&Q) 26CP
従って、
(13)により、
(14)
①(P&Q)→(P&Q)
② P→(Q→(P&Q))
に於いて、
①=② である。
従って、
(12)(13)(14)により、
(15)
①(P&Q)→(P&Q)
② P→(Q→(P&Q))
に於いて、
①=② であって、尚且つ、
① が「恒真式(同一律)」であるため、
② も「恒真式(同一律)」である。
然るに、
(16)
(ⅰ)
1 (1) P A
2(2) Q A
12(3) P&Q 12&I
1 (4)Q→(P&Q) 23CP
(ⅱ)
1 (1) P A
2(2) Q A
12(3) P&Q 12&I
1 (4) Q→(P&Q) 23CP
(5)P→(Q→(P&Q)) 14CP
従って、
(16)により、
(17)
① P├ Q→(P&Q)
② ├ P→(Q→(P&Q))
という「連式」は、両方とも、「妥当」である。
従って、
(17)により、
(18)
例へば、
P=10月
Q=17日
であるとすると、
① P├ Q→(P&Q)
② ├ P→(Q→(P&Q))
といふ「連式」、すなはち、
① 10月なので、17日ならば、(10月17日である)。
② 10月ならば(17日ならば、(10月17日である))。
といふ「推論」は、「妥当」である。
然るに、
(19)
① 11月某日
に於いて、
①(今日は)10月なので、
と「断定」すれば、「ウソ」になるが、
② 11月某日
に於いて、
②(今日が)10月ならば、
と「仮定」しても、「ウソ」にはならない。
従って、
(09)(15)(18)(19)により、
(20)
① P├ Q→(P&Q)
② ├ P→(Q→(P&Q))
といふ「連式」に於ける、
② P→(Q→(P&Q))
という「論理式」は、
(ⅰ)「仮定の数がゼロである所の、連式の結論」であって、
(ⅱ)「恒真式(トートロジー)」であって、尚且つ、
(ⅲ)「恒に真」である。
(01)
D={a、b、c}
であるならば、
① ∀x(Fx)
②(Fa)&(Fb)&(Fc)
に於いて、
①=② である。
従って、
(01)により、
(02)
D={a、b、c}
であるならば、
① ∀x∀y(Fx&Fy)は、
yに関して、
①(Fx&Fa)&(Fx&Fb)&(Fx&Fc)
という「3通り」が有る。
従って、
(02)により、
(03)
D={a、b、c}
であるならば、
① ∀x∀y(Fx&Fy)は、
xに関しても、
①(Fa&Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb&Fa)&(Fb&Fb)&(Fb&Fc)
③(Fc&Fa)&(Fc&Fb)&(Fc&Fc)
という「3通り」が有る。
然るに、
(04)
「冪等律」により、
①(Fa&Fa)=Fa
②(Fb&Fb)=Fb
③(Fc&Fc)=Fc
従って、
(03)(04)により、
(05)
①(Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb&Fa)&(Fb)&(Fb&Fc)
③(Fc&Fa)&(Fc&Fb)&(Fc)
従って、
(04)により、
(06)
「交換法則」により、
①(Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb)&(Fb&Fa)&(Fb&Fc)
③(Fc)&(Fc&Fa)&(Fc&Fb)
従って、
(06)により、
(07)
「交換法則・結合法則」により、
①(Fa&Fa&Fa)&(Fb)&(Fc)
②(Fb&Fb&Fb)&(Fa)&(Fc)
③(Fc&Fc&Fc)&(Fa)&(Fb)
従って、
(07)により、
(08)
「冪等律」により、
①(Fa)&(Fb)&(Fc)
②(Fb)&(Fa)&(Fc)
③(Fc)&(Fa)&(Fb)
従って、
(08)により、
(09)
「交換法則」により、
①(Fa)&(Fb)&(Fc)
②(Fa)&(Fb)&(Fc)
③(Fa)&(Fb)&(Fc)
従って、
(09)により、
(10)
「冪等律」により、
③(Fa)&(Fb)&(Fc)
従って、
(01)~(10)により、
(11)
② ∀x∀y(Fx&Fy)
③(Fa)&(Fb)&(Fc)
に於いて、
②=③ である。
従って、
(01)(11)により、
(12)
D={a、b、c}
であるとして、
① ∀y(Fy)
② ∀x∀y(Fx&Fy)
③(Fa)&(Fb)&(Fc)
に於いて、
①=②=③ である。
然るに、
(13)
D={a、b、c、d}
であるならば、
① ∀x(Fx)
②(Fa)&(Fb)&(Fc)&(Fd)
に於いて、
①=② である。
従って、
(01)~(12)(13)により、
(14)
「数学的帰納法」により、
D={a、b、c、d、・・・・・}
に於いて、
① ∀y(Fy)
② ∀x∀y(Fx&Fy)
に於いて、
①=② である。
従って、
(14)により、
(15)
① ∀y(Fy→y=y)
② ∀x∀y(Fx&Fy→x=y)
に於いて、
①=② である。
従って、
(15)により、
(16)
E.J.レモン、論理学初歩、練習問題3(P215)
つぎの相互に導出可能な結果を確立せよ。
(a):正確に1のものがFをもつ。
∃x{Fx&∀y(Fy→x=y)}├ ∃xFx&∀x∀y(Fx&Fy→x=y)
1 (1)∃x{Fx&∀y(Fy→x=y)} A
2 (2) Fa&∀y(Fy→a=y) A
2 (3) ∀y(Fy→a=y) 2&E
2 (4) Fb→a=b 3UE
5(5) Fa&Fb A
5(6) Fb 5&E
25(7) a=b 46MPP
2 (8) Fa&Fb→a=b 57CP
2 (9) ∀y(Fa&Fy→a=y) 8UI
2 (ア) ∀x∀y(Fx&Fy→x=y) 9UI(2には、aがあるが、a=bである)。
2 (イ) Fa 2&E
2 (ウ)∃xFx イEI
2 (エ)∃xFx&∀x∀y(Fx&Fy→x=y) アウ&I
1 (ウ)∃xFx&∀x∀y(Fx&Fy→x=y) 12エEE
という「計算」は、「妥当」であり、
(b):正確に1のものがFをもつ。
∃xFx&∀x∀y(Fx&Fy→x=y)├ ∃x{Fx&∀y(Fy→x=y)}
1 (1)∃xFx&∀x∀y(Fx&Fy→x=y) A
1 (2)∃xFx 1&E
3 (3) Fa A
1 (4) ∀x∀y(Fx&Fy→x=y) 1&E
1 (5) ∀y(Fa&Fy→a=y) 4UE
1 (6) Fa&Fb→a=b 5UE
7(7) Fb A
37(8) Fa&Fb 37&I
137(9) a=b 68MPP
13 (ア) Fb→a=b 79CP
13 (イ) ∀y(Fy→a=y) アUI
13 (ウ) Fa&∀y(Fy→a=y) 3イ&I
13 (エ) ∃x{Fx&∀y(Fy→x=y)} ウEI
1 (オ) ∃x{Fx&∀y(Fy→x=y)} 23エEE
という「計算」は、「妥当」である。
従って、
(16)により、
(17)
① ∃x{Fx&∀y(Fy→x=y)}
② ∃xFx&∀x∀y(Fx&Fy→x=y)
に於いて、すなはち、
① あるxは{Fであって、すべてのyについて、 (yがFであるならば、xとyは同一である)}。
② あるxは、Fであって、すべてのxとyについて(xがFであって、yもFであるあるならば、xとyは同一である)。
に於いて、
①=② である。
(01)
1 (1) ∃x(紫式部x&源氏物語の著者x) A
2 (2) 紫式部a&源氏物語の著者a A
3 (3) ~∀x(紫式部x→源氏物語の著者x) A
3 (5) ∃x~(紫式部x→源氏物語の著者x) 3量化子の関係
6 (6) ~(紫式部a→源氏物語の著者a) A
6 (7) ~(~紫式部a∨源氏物語の著者a) 6含意の定義
6 (8) 紫式部a&~源氏物語の著者a 6ド・モルガンの法則
2 (9) 源氏物語の著者a 2&E
6 (ア) ~源氏物語の著者a 8&E
2 6 (イ) 源氏物語の著者&~源氏物語の著者a 9ア&I
23 (ウ) 源氏物語の著者&~源氏物語の著者a 36イEE
1 3 (エ) 源氏物語の著者&~源氏物語の著者a 12ウEE
1 (オ)~~∀x(紫式部x→源氏物語の著者x) 3エRAA
1 (カ) ∀x(紫式部x→源氏物語の著者x) オDN
キ (キ) ∃x(清少納言x&紫式部x) A
1 (ク) 紫式部a→源氏物語の著者a カUE
ケ (ケ) 清少納言a&紫式部a A
コ (コ)∃x(清少納言x&~源氏物語の著者x) A
サ(サ) 清少納言a&~源氏物語の著者a A
ケ (シ) 紫式部a ケ&E
1 ケ (ス) 源氏物語の著者a クシMPP
サ(セ) ~源氏物語の著者a サ&E
1 ケ サ(ソ) 源氏物語a&~源氏物語の著者a スセ&I
1 キ サ(タ) 源氏物語a&~源氏物語の著者a キケソEE
1 キ コ (チ) 源氏物語a&~源氏物語の著者a コサタEE
1 コ (ツ) ~∃x(清少納言x&紫式部x) キチRAA
1 コ (テ) ∀x~(清少納言x&紫式部x) ツ量化子の関係
1 コ (ト) ~(清少納言a&紫式部a) テUE
1 コ (ナ) ~清少納言a∨~紫式部a ト、ド・モルガンの法則
1 コ (ニ) 清少納言a→~紫式部a ナ含意の定義
1 コ (ヌ) ∀x(清少納言x→~紫式部x) ニUI
従って、
(01)により、
(02)
(ⅰ)∃x( 紫式部x& 源氏物語の著者x)。然るに、
(ⅱ)∃x(清少納言x&~源氏物語の著者x)。従って、
(ⅲ)∀x(清少納言x→~紫式部x)。
という「推論」は「妥当」である。
従って、
(02)により、
(03)
(ⅰ)あるxは、 紫式部であって、源氏物語の著者である。 然るに、
(ⅱ)あるxは、清少納言であるが、源氏物語の著者ではない。従って、
(ⅲ)いかなるxであっても(xが清少納言であれば、紫式部ではない)。
という「推論」は「妥当」である。
従って、
(03)により、
(04)
(ⅰ)紫式部は、源氏物語の著者である。 然るに、
(ⅱ)清少納言は源氏物語の著者ではない。従って、
(ⅲ)誰であれ、清少納言であるならば、紫式部ではない。
という「推論」は、「述語論理」としても、「妥当」である。
然るに、
(05)
然るに、
(06)
現在の情報検索や自然言語処理は、基本的に論理で処理させることは当面諦めて、統計と確率の手法でAIに言語を学習させようとしています。つまり、文章の意味はわからなくても、その文章に出てくる既知の単語とその組合せから統計的に推測して、正しそうな回答を導き出そうとしているのです(新井紀子、AIvs.教科書が読めない子供たち、2018年、122頁)。
従って、
(01)~(06)により、
(07)
AIは、
(ⅰ)紫式部は、源氏物語の著者である。 然るに、
(ⅱ)清少納言は源氏物語の著者ではない。従って、
(ⅲ)誰であれ、清少納言であるならば、紫式部ではない。
という「推論」を行う際に、
① ∃x( 紫式部x& 源氏物語の著者x)
② ∀x( 紫式部x→ 源氏物語の著者x)
③ ∃x(清少納言x&~源氏物語の著者x)
④ ∀x(清少納言x→~紫式部x)。
に於ける、
①から②を「演繹」して、その上で、
② と ③ によって、
④を「演繹」している。
といふ、わけではない。
従って、
(06)(07)により、
(08)
AIは、「論理的な機械」ではなく、
AIは、「確率的・統計的な機械」である。
(01)
142 ∃x(Fx)├ ∃x∃y(Fx&Fy)
1 (1) ∃x(Fx) A
2(2) Fa A
2(3) Fa&Fa 22&I
2(4) ∃y(Fa&Fy) 3EI
2(5)∃x∃y(Fx&Fy) 4EI
1 (6)∃x∃y(Fx&Fy) 125EE
(この結果は事実上、強化して相互導出可能にすることができる。)この連式の妥当性から、
ひとつだけの対象がFを持っているならば、∃x∃y(Fx&Fy)ということが帰結する。
言い換えると、相異なる変数「x」と「y」を用いる場合に、そのことから、それに対応する異なった対象が存在する、
ということは、帰結しないのである(E.J.レモン著、論理学初歩、竹尾治一郎・浅野楢英、1973年、210頁)。
然るに、
(02)
{xの変域}={a、b、c}
とする。
従って、
(02)により、
(03)
① ∃x(Fx)
② ∃y(Fy)
③ Fa∨Fb∨Fc
に於いて、
①=② であって、
①=③ である。
従って、
(03)により、
(04)
① ∃x{∃y(Fx&Fy)}
②{(Fa&Fa)∨(Fa&Fb)∨(Fa&Fc)}∨{(Fb&Fa)∨(Fb&Fb)∨(Fb&Fc)}∨{(Fc&Fa)∨(Fc&Fb)∨(Fc&Fc)}
に於いて、
①=② である。
然るに、
(05)
「冪等律」により、
①(Fa&Fa)=Fa
②(Fb&Fb)=Fb
③(Fc&Fc)=Fc
従って、
(04)(05)により、
(06)
① ∃x{∃y(Fx&Fy)}
②{Fa∨(Fa&Fb)∨(Fa&Fc)}∨{(Fb&Fa)∨Fb∨(Fb&Fc)}∨{(Fc&Fa)∨(Fc&Fb)∨Fc}
に於いて、
①=② である。
然るに、
(07)
「交換法則」により、
①(Fa&Fb)=(Fb&Fa)
②(Fa&Fc)=(Fc&Fa)
③(Fb&Fc)=(Fc&Fb)
従って、
(06)(07)により、
(08)
① ∃x{∃y(Fx&Fy)}
②{Fa∨(Fa&Fb)∨(Fa&Fc)}∨{Fb∨(Fb&Fc)}∨{Fc}
に於いて、
①=② である。
然るに、
(09)
「交換法則・結合法則」により、
②{Fa∨(Fa&Fb)∨(Fa&Fc)}∨{Fb∨(Fb&Fc)}∨{Fc}
③{(Fa∨Fb∨Fc)∨(Fa&Fb)}∨{(Fa&Fc)∨(Fb&Fc)}
に於いて、
②=③ である。
然るに、
(10)
1 (1){(Fa∨Fb∨Fc)∨(Fa&Fb)}∨{(Fa&Fc)∨(Fb&Fc)} A
2 (2){(Fa∨Fb∨Fc)∨(Fa&Fb)} A
3 (3) (Fa∨Fb∨Fc) A
4 (4) (Fa&Fb) A
4 (5) Fa 4&E
4 (6) Fa∨Fb 5∨I
4 (7) (Fa∨Fb∨Fc) 6∨I
2 (8) (Fa∨Fb∨Fc) 23347∨E
9 (9) {(Fa&Fc)∨(Fb&Fc)} A
ア (ア) (Fa&Fc) A
ア (イ) Fa ア&E
ア (ウ) Fa∨Fb イ∨I
ア (エ) (Fa∨Fb∨Fc) ウ∨I
オ (オ) (Fb&Fc) A
オ (カ) Fb オ&E
オ (キ) Fa∨Fb カ∨I
オ (ク) (Fa∨Fb∨Fc) キ∨I
9 (ケ) (Fa∨Fb∨Fc) 9アエオク∨E
1 (コ) (Fa∨Fb∨Fc) 1289ケ∨E
従って、
(08)(09)(10)により、
(11)
① ∃x{∃y(Fx&Fy)}
② (Fa∨Fb∨Fc)
に於いて、
①⇒② である。
従って、
(03)(11)により、
(12)
① ∃x{∃y(Fx&Fy)}
② ∃x(Fx)
に於いて、
①⇒② である。
従って、
(01)(12)により、
(13)
142 ∃x(Fx)┤├ ∃x∃y(Fx&Fy)
は、相互導出可能にすることができる。
(01)
(ⅰ)「東京都民でない」ならば、「中野区民でない」。
(ⅱ)「東京都民である」ならば、「中野区民である」。
という「命題の真偽」を「判定せよ」。
cf.
然るに、
(02)
例えば、
(ⅰ)「埼玉県民」であるならば、「東京都民」ではないし、
(〃)「埼玉県民」であるならば、「中野区民」ではない。
従って、
(02)による、
(03)
(ⅰ)「東京都民でない」ならば、「中野区民でない」。
(〃)「東京都民でない・中野区民」は「存在しない」。
という「命題」は「真」である。
然るに、
(04)
(ⅱ)「練馬区民」であるならば、「東京都民」であるが、
(〃)「練馬区民」であるならば、「中野区民」ではない。
従って、
(04)により、
(05)
(ⅱ)「東京都民である」ならば、「中野区民である」。
という「命題」は「偽」である。
然るに、
(06)
「マイクロソフト・コパイロット」の「解答」は、
従って、
(04)(05)(06)により、
(07)
「マイクロソフト・コパイロット」は、
(ⅱ)「練馬区民」であるならば、「東京都民」であるが、
(〃)「練馬区民」であるならば、「中野区民」ではない。
にも拘わらず、
(ⅱ)「東京都民である」ならば、「中野区民である」。
という「命題」が、「偽」であることを「見抜けなかった」。
という、ことになる。
(01)
「一昨日(令和6年3月30日)の記事」でも示した通り、
{xの変域}={a,b,c}
であるとして、
⑪ ∃x∃y(Fx&Fy)
であるならば、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④( Fb&Fc)
⑤(Fa &Fc)
⑥(Fa&Fb )
⑦(Fa&Fb&Fc)
といふ「7通り」が、「真」であることが「可能」である。
従って、
(01)により、
(02)
⑫ ∃x∃y{(Fx&Fy)&(x≠y)}
といふ「論理式」ではなく、
⑪ ∃x∃y{(Fx&Fy)&(x=y)}
といふ「論理式」が「真」であるならば、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
といふ「3通りの内の、どれか1つが真」である。
従って、
(01)(02)により、
(03)
⑪ ∃x∃y{(Fx&Fy)&(x=y)}
といふ「論理式」ではなく、
⑫ ∃x∃y{(Fx&Fy)&(x≠y)}
といふ「論理式」が「真」であるならば、
④( Fb&Fc)
⑤(Fa &Fc)
⑥(Fa&Fb )
⑦(Fa&Fb&Fc)
といふ「4通りの内の、どれか1つが真」である。
然るに、
(04)
④( Fb&Fc)
⑤(Fa &Fc)
⑥(Fa&Fb )
⑦(Fa&Fb&Fc)
といふ「4通りの内の、どれか1つが真」である。
といふことは、{a,b,c}の中の、
⑫「2個以上の個体が、Fである。」
といふ、ことである。
従って、
(03)(04)により、
(05)
⑫ ∃x∃y{(Fx&Fy)&(x≠y)}
⑬ ~∃x∃y{(Fx&Fy)&(x≠y)}
といふ「論理式」は、それぞれ、
⑫「2個以上の個体が、Fである。」
⑬「2個以上の個体が、Fである。」といふことはない。
といふ「意味」である。
然るに、
(06)
(ⅲ)
1(1)~∃x∃y{(Fx&Fy)&(x≠y)} A
1(2)∀x~∃y{(Fx&Fy)&(x≠y)} 1量化子の関係
1(3)∀x∀y~{(Fx&Fy)&(x≠y)} 2量化子の関係
1(4) ∀y~{(Fa&Fy)&(a≠y)} 3UE
1(5) ~{(Fa&Fb)&(a≠b)} 4UE
1(6) ~(Fa&Fb)∨(a=b) 5ド・モルガンの法則
1(7) (Fa&Fb)→(a=b) 6含意の定義
1(8) ∀y{(Fa&Fy)→(a=y)} 7UI
1(9) ∀x∀y{(Fx&Fy)→(x=y)} 8UI
(ⅳ)
1(1) ∀x∀y{(Fx&Fy)→(x=y)} A
1(2) ∀y{(Fa&Fy)→(a=y)} 1UE
1(3) (Fa&Fb)→(a=b) 2UE
1(4) ~(Fa&Fb)∨(a=b) 3含意の定義
1(5) ~{(Fa&Fb)&(a≠b)} 4ド・モルガンの法則
1(6) ∀y~{(Fa&Fy)&(a≠y)} 5UI
1(7)∀x∀y~{(Fx&Fy)&(x≠y)} 6UI
1(8)∀x~∃y{(Fx&Fy)&(x≠y)} 7量化子の関係
1(9)~∃x∃y{(Fx&Fy)&(x≠y)} 8量化子の関係
従って、
(05)(06)により、
(07)
⑬ ~∃x∃y{(Fx&Fy)&(x≠y)}
⑭ ∀x∀y{(Fx&Fy)→(x=y)}
に於いて、
⑬=⑭ である。
従って、
(05)(06)(07)により、
(08)
⑬ ~∃x∃y{(Fx&Fy)&(x≠y)}
⑭ ∀x∀y{(Fx&Fy)→(x=y)}
といふ「論理式」、すなはち、
⑬「あるxとあるyについて(xがFであって、yもFであって、xとyが「同一」ではない。」といふことはない。
⑭「すべてのxとyについて(xがFであって、yもFであるならば、xとyは、「同一」である)。」
といふ「論理式」は、「両方」とも、
⑬「2個以上の個体が、Fである。」といふことはない。
⑭「2個以上の個体が、Fである。」といふことはない。
といふ「意味」である。
然るに、
(09)
⑭ ∃x(Fx)
といふ「論理式」、すなはち、
⑭「(Fであるx)が存在する。」
といふ「論理式」は、
⑭「1個以上の個体が、Fである。」
といふ「意味」である。
従って、
(08)(09)により、
(10)
⑭ ∃x(Fx)&∀x∀y{(Fx&Fy)→(x=y)}
といふ「論理式」は、
⑭「1個以上の個体が、Fである」が、「2個以上の個体が、Fである」といふことはない。
といふ「意味」である。
然るに、
(11)
(ⅳ)
1 (1)∃xFx&∀x∀y(Fx&Fy→x=y) A
1 (2)∃xFx 1&E
3 (3) Fa A
1 (4) ∀x∀y(Fx&Fy→x=y) 1&E
1 (5) ∀y(Fa&Fy→a=y) 4UE
1 (6) Fa&Fb→a=b 5UE
7(7) Fb A
37(8) Fa&Fb 37&I
137(9) a=b 68MPP
13 (ア) Fb→a=b 79CP
13 (イ) ∀y(Fy→a=y) アUI
13 (ウ) Fa&∀y(Fy→a=y) 3イ&I
13 (エ) ∃x{Fx&∀y(Fy→x=y)} ウEI
1 (オ) ∃x{Fx&∀y(Fy→x=y)} 23エEE
(ⅴ)
1 (1)∃x{Fx&∀y(Fy→x=y)} A
2 (2) Fa&∀y(Fy→a=y) A
2 (3) ∀y(Fy→a=y) 2&E
2 (4) Fb→a=b 3UE
5(5) Fa&Fb A
5(6) Fb 5&E
25(7) a=b 46MPP
2 (8) Fa&Fb→a=b 57CP
2 (9) ∀y(Fa&Fy→a=y) 8UI
2 (ア) ∀x∀y(Fx&Fy→x=y) 9UI
2 (イ)Fa 2&E
2 (ウ)∃xFx イEI
2 (エ)∃xFx&∀x∀y(Fx&Fy→x=y) アウ&I
1 (ウ)∃xFx&∀x∀y(Fx&Fy→x=y) 12エEE
従って、
(11)により、
(12)
⑭ ∃xFx&∀x∀y(Fx&Fy→x=y)
⑮ ∃x{Fx&∀y(Fy→x=y)}
に於いて、
⑭=⑮ である。
従って、
(10)(11)(12)により、
(13)
⑭ ∃x(Fx)&∀x∀y{(Fx&Fy)→(x=y)}
⑮ ∃x{Fx&∀y(Fy→x=y)}
といふ「論理式」、すなはち、
⑭「あるxはFであり、すべてのxとyについて(xがFであって、yもFであるならば、xとyは、「同一」である)。」
⑮「あるxはFであり、すべてのyについて(yがFであるならば、xとyは、「同一」である)。」
といふ「論理式」は、「両方」とも、
⑭「1個以上の個体が、Fである」が、「2個以上の個体が、Fである」といふことはない。
⑮「1個以上の個体が、Fである」が、「2個以上の個体が、Fである」といふことはない。
といふ「意味」である。
然るに、
(14)
⑮「1個以上の個体が、Fである」が、「2個以上の個体が、Fである」といふことはない。
といふことは、
⑮「唯一の個体だけが、Fである。」
といふ「意味」である。
従って、
(13)(14)により、
(15)
⑮ ∃x{Fx&∀y(Fy→x=y)}
といふ「論理式」、すなはち、
⑮「あるxはFであり、すべてのyについて(yがFであるならば、xとyは、「同一」である)。」
といふ「論理式」は、
⑮「唯一の個体だけが、Fである。」
といふ「意味」である。
従って、
(15)により、
(16)
⑮ ∃x{偶素数x&∀y(偶素数y→x=y=2)}
といふ「論理式」は、
⑮「偶数の素数は、2だけである。」
といふ「意味」である。
然るに、
(15)(16)により、
(17)
「自然数2が、個体である」といふのは「ヲカシイ」ものの、
「述語論理」では、「xやyやz」を「個体変数(individual variable)」と言ふ。
(01)
142 ∃x(Fx)├ ∃x∃y(Fx&Fy)
1 (1) ∃x(Fx) A
2(2) Fa A
2(3) Fa&Fa 22&I
2(4) ∃y(Fa&Fy) 3EI
2(5)∃x∃y(Fx&Fy) 4EI
1 (6)∃x∃y(Fx&Fy) 125EE
(この結果は事実上、強化して相互導出可能にすることができる。)この連式の妥当性から、
ひとつだけの対象がFを持っているならば、∃x∃y(Fx&Fy)ということが帰結する。
言い換えると、相異なる変数「x」と「y」を用いる場合に、そのことから、それに対応する異なった対象が存在する、
ということは、帰結しないのである(E.J.レモン著、論理学初歩、竹尾治一郎・浅野楢英、1973年、210頁)。
然るに、
(02)
{xの変域}={a,b,c}
であるならば、
(ⅰ) ∃y(Fy)
(ⅱ)(Fa∨Fb∨Fc)
に於いて、
(ⅰ)=(ⅱ)である。
然るに、
(03)
「選言(∨)の真理表」により、
(ⅱ)(Fa∨Fb∨Fc)
といふ「論理式」は、
①(Fa )∨
②( Fb )∨
③( Fc)∨
④(Fa&Fb )∨
⑤(Fa &Fc)∨
⑥( Fb&Fc)∨
⑦(Fa&Fb&Fc)
といふ「論理式」に「等しい」。
従って、
(02)(03)により、
(04)
{xの変域}={a,b,c}
であるならば、
∃y(Fy)は、
といふ「論理式」は、
①(Fa)
② (Fb)
③ (Fc)
④(Fa&Fb )
⑤(Fa &Fc)
⑥( Fb&Fc)
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
然るに、
(05)
「冪等律」により、
①(Fa)
②(Fb)
③(Fc)
といふ「3つの論理式」は、それぞれ、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
といふ「3つの論理式」に「等しい」。
従って、
(04)(05)により、
(06)
{xの変域}={a,b,c}
であるならば、
∃y(Fy)は、
といふ「論理式」は、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④( Fb&Fc)
⑤(Fa &Fc)
⑥(Fa&Fb )
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
然るに、
(07)
{xの変域}={a,b,c}
であるならば、
∃x{∃y(Fx&Fy)}=
{(Fx&Fa)∨(Fx&Fb)∨(Fx&Fc)}∨
{(Fx&Fa)∨(Fx&Fb)∨(Fx&Fc)}∨
{(Fx&Fa)∨(Fx&Fb)∨(Fx&Fc)}
であるため、
∃x{∃y(Fx&Fy)}=
{(Fa&Fa)∨(Fa&Fb)∨(Fa&Fc)}∨
{(Fb&Fa)∨(Fb&Fb)∨(Fb&Fc)}∨
{(Fc&Fa)∨(Fc&Fb)∨(Fc&Fc)}
である。
然るに、
(08)
「交換法則」により、
①(Fa&Fb)
②(Fc&Fa)
③(Fa&Fc)
④(Fc&Fa)
⑤(Fb&Fc)
⑥(Fc&Fb)
に於いて、
①=④
②=⑤
③=⑥
従って、
(07)(08)により、
(09)
{xの変域}={a,b,c}
であるならば、
∃x{∃y(Fx&Fy)}=
{(Fa&Fa)∨(Fa&Fb) ∨(Fa&Fc)}∨
{(Fb&Fb)∨(Fb&Fc)}∨
{(Fc&Fc)}
である。
従って、
(09)により、
(10)
「交換法則・結合法則」により、
∃x{∃y(Fx&Fy)}=
{(Fa&Fa)∨(Fb&Fb)∨(Fc&Fc)}∨{(Fa&Fb)∨(Fa&Fc)∨(Fb&Fc)}
である。
然るに、
(11)
1 (1){(Fa&Fa)∨(Fb&Fb) ∨(Fc&Fc)}∨{(Fa&Fb)∨(Fa&Fc) ∨(Fb&Fc)} A
2 (2){(Fa&Fa)∨(Fb&Fb) ∨(Fc&Fc)} A
2 (3){(Fa&Fa)∨(Fb&Fb)}∨(Fc&Fc) 2結合法則
4 (4){(Fa&Fa)∨(Fb&Fb)} A
5 (5) (Fa&Fa) A
5 (6) Fa 5&E
5 (7) Fa∨Fb 6∨I
5 (8) Fa∨Fb∨Fc 7∨I
9 (9) (Fb&Fb) A
9 (ア) Fb 9&E
9 (イ) Fa∨Fb ア∨I
9 (ウ) Fa∨Fb∨Fc イ∨I
4 (エ) Fa∨Fb∨Fc 4589ウ∨E
オ (オ) (Fc&Fc) A
オ (カ) Fc オ&E
オ (キ) Fb∨Fc カ∨I
オ (ク) Fa∨Fb∨Fc キ∨I
2 (ケ) Fa∨Fb∨Fc 24エオク∨E
コ (コ) {(Fa&Fb)∨(Fa&Fc) ∨(Fb&Fc)} A
コ (サ) {(Fa&Fb)∨(Fa&Fc)}∨(Fb&Fc) コ結合法則
シ (シ) {(Fa&Fb)∨(Fa&Fc)} A
ス (ス) Fa&Fb A
ス (セ) Fa ス&E
ス (ソ) Fa∨Fb セ∨I
ス (タ) Fa∨Fb∨Fc ソ∨I
チ (チ) Fa&Fc A
チ (ツ) Fa チ&E
チ (テ) Fa∨Fb ツ∨I
チ (ト) Fa∨Fb∨Fc テ∨I
シ (ナ) Fa∨Fb∨Fc シスタチト∨E
ニ(ニ) (Fb&Fc) A
ニ(ヌ) Fb ニ&E
ニ(ネ) Fa∨Fb ヌ∨I
ニ(ノ) Fa∨Fb∨Fc ネ∨I
コ (ハ) Fa∨Fb∨Fc コシナニノ∨E
1 (ヒ) Fa∨Fb∨Fc 12ケコハ∨E
従って、
(11)により、
(12)
①{(Fa&Fa)∨(Fb&Fb)∨(Fc&Fc)}∨{(Fa&Fb)∨(Fa&Fc)∨(Fb&Fc)}
② (Fa∨Fb∨Fc)
に於いて、
①⇒② である。
従って、
(10)(11)(12)により、
(13)
{xの変域}={a,b,c}
であるならば、
∃x{∃y(Fx&Fy)}
といふ「論理式」も、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④( Fb&Fc)
⑤(Fa &Fc)
⑥(Fa&Fb )
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
従って、
(06)(13)により、
(14)
{xの変域}={a,b,c}
であるならば、
∃y(Fy)
といふ「論理式」と、
∃x{∃y(Fx&Fy)}
といふ「論理式」は、両方とも、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④( Fb&Fc)
⑤(Fa &Fc)
⑥(Fa&Fb )
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
従って、
(01)(14)により、
(15)
ひとつだけの対象が、性質Fを持っているならば、∃x{∃y(Fx&Fy)}ということが帰結する。
言い換えると、相異なる変数「x」と「y」を用いる場合に、そのことから、それに対応する異なった対象が存在する、
ということは、帰結しないのである(E.J.レモン著、論理学初歩、竹尾治一郎・浅野楢英、1973年、210頁)。
といふ「説明」は、「正しい」。
(01)
男子=男の子である。
~男子=男の子でない。
女子=女の子である。
~女子=女の子でない。
帽子=帽子をかぶっている。
~帽子=帽子をかぶっていない。
スニ=スニ―カーを履いている。
~スニ=スニーカーを履いていない。
とする。
従って、
(01)により、
(02)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α)帽子をかぶっていない子どもは、みんな女の子です
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふ「日本語」に「等しい」。
然るに、
(03)
(Γ)∀x(男子x⇔~女子x)
(〃)男の子であるならば、女の子ではなく、女の子でないならば、男の子である。
を「公理」とする。
然るに、
(04)
(α)
1 (1)∀x(~帽子x→女子x) A
1 (2) ~帽子a→女子a 1UE
(3)∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a UE
(5) 男子a→~女子a 4&E(Df.⇔)
6(6) 男子a A
6(7) ~女子a 56MPP
16(8) ~~帽子a 17MPP
16(9) 帽子a 8DN
1 (ア) 男子a→帽子a 69CP
1 (イ) ∀x(男子x→帽子x) アUI
(〃)
1 (1)∀x(男子x→ 帽子x) A
1 (2) 男子a→ 帽子a 1UE
(3)∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a UE
(5) ~女子a→男子a 4&E(Df.⇔)
6(6) ~帽子a A
16(7) ~男子a 26MTT
16(8) ~~女子a 57MTT
16(9) 女子a 8DN
1 (ア) ~帽子a→女子a 69CP
1 (イ)∀x(~帽子x→女子x) アUI
従って、
(02)(03)(04)により、
(05)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α) ∀x( 男子x→帽子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」に「等しい」。
然るに、
(06)
(β)
1 (1)~∃x(スニx& 男子x) A
1 (2)∀x~(スニx& 男子x) 1量化子の関係
1 (3) ~(スニa& 男子a) 2UE
1 (4) ~スニa∨~男子a 3ド・モルガンの法則
1 (5) スニa→~男子a 4含意の定義
(6) ∀x(男子x⇔~女子x) 公理
(7) 男子a⇔~女子a 6UE
(8) ~女子a→男子a 7&E(Df.⇔)
9 (9) ~男子a A
9 (ア) ~~女子a 89MTT
9 (イ) 女子a アDN
(ウ) ~男子a→女子a 9イCP
エ(エ) スニa A
1 エ(オ) ~男子a 5エMPP
1 エ(カ) 女子a ウオMPP
1 (キ) スニa→ 女子a エカCP
1 (ク) ∀x(スニx→ 女子x) キUI
(〃)
1 (1) ∀x(スニx→ 女子x) A
1 (2) スニa→ 女子a 1UE
(3) ∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a 3UE
(5) 男子a→~女子a 4&E(Df.⇔)
6 (6) 女子a A
6 (7) ~~女子a 6DN
6 (8) ~男子a 57MTT
(9) 女子a→~男子a 68MPP
ア(ア) スニa A
1 ア(イ) 女子a 2アMPP
1 ア(ウ) ~男子a 9イMPP
1 (エ) スニa→~男子a アウCP
1 (オ) ~スニa∨~男子a エ含意の定義
1 (カ) ~(スニa& 男子a) オ、ド・モルガンの法則
1 (キ)∀x~(スニx& 男子x) カUI
従って、
(05)(06)により、
(07)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x& スニx)
といふ「述語論理式」は、
(α) ∀x( 男子x→帽子x)
(β) ∀x( スニx→女子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」に「等しい」。
然るに、
(08)
(2)
1 (1)~∃x(帽子x& 女子x) A
1 (2)∀x~(帽子x& 女子x) 1量化子の関係
1 (3) ~(帽子a& 女子a) 2UE
1 (4) ~帽子a∨~女子a 3ド・モルガンの法則
1 (5) 帽子a→~女子a 4含意の定義
(6) ∀x(女子x⇔~男子x) 公理
(7) 女子a⇔~男子a 6UE
(8) ~男子a→女子a 7&E(Df.⇔)
9 (9) ~女子a A
9 (ア) ~~男子a 89MTT
9 (イ) 男子a アDN
(ウ) ~女子a→男子a 9イCP
エ(エ) 帽子a A
1 エ(オ) ~女子a 5エMPP
1 エ(カ) 男子a ウオMPP
1 (キ) 帽子a→ 男子a エカCP
1 (ク) ∀x(帽子x→ 男子x) キUI
(〃)
1 (1) ∀x(帽子x→ 男子x) A
1 (2) 帽子a→ 男子a 1UE
(3) ∀x(女子x⇔~男子x) 公理
(4) 女子a⇔~男子a 3UE
(5) 女子a→~男子a 4&E(Df.⇔)
6 (6) 男子a A
6 (7) ~~男子a 6DN
6 (8) ~女子a 57MTT
(9) 男子a→~女子a 68MPP
ア(ア) 帽子a A
1 ア(イ) 男子a 2アMPP
1 ア(ウ) ~女子a 9イMPP
1 (エ) 帽子a→~女子a アウCP
1 (オ) ~帽子a∨~女子a エ含意の定義
1 (カ) ~(帽子a& 女子a) オ、ド・モルガンの法則
1 (キ)∀x~(帽子x& 女子x) カUI
1 (ク)~∃x(帽子x& 女子x) キ量化子の関係
従って、
(07)(08)により、
(09)
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
(1) ∀x(男子x→帽子x)
(2)~∃x(帽子x&女子x)
(3)~∃x(帽子x&スニx)
といふ「論理式」は、
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
(1) ∀x(男子x→帽子x)
(2) ∀x(帽子x→男子x)
(3)~∃x(帽子x&スニx)
といふ「述語論理式」に「等しい」。
従って、
(05)~(09)により、
(10)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
(1) ∀x(男子x→帽子x)
(2) ∀x(帽子x→男子x)
(3)~∃x(帽子x&スニx)
といふ「述語論理式」に「等しい」。
従って、
(10)により、
(11)
(α) ∀x(男子x→帽子x)
(1) ∀x(男子x→帽子x)
(2) ∀x(帽子x→男子x)
に於いて、
(2)は(α)の「逆」であり、
(2)は(1)の「逆」であるが、「逆は、必ずしも、真ではない」。
従って、
(11)により、
(12)
(α)⇔(1)であるが、
(α)→(2)ではない。
然るに、
(13)
1 (1)∀x(男子x→帽子x) A
2 (2)∀x(スニx→女子x) A
3 (3)∃x(帽子x&スニx) A
1 (4) 男子a→帽子a 1UE
2 (5) スニa→女子a 2UE
6(6) 帽子a&スニa A
6(7) 帽子a 6&E
6(8) スニa 6&E
2 6(9) 女子a 57MPP
2 6(ア) 帽子a&女子a 79&I
2 6(イ)∃x(帽子x&女子x) アEI
23 (ウ)∃x(帽子x&女子x) 36イEE
従って、
(01)(02)(10)(13)により、
(14)
(α)∀x(男子x→帽子x)
(β)∀x(スニx→女子x)
(3)∃x(帽子x&女子x)
といふ「命題」、すなはち、
(α)男の子は、みんな帽子をかぶっています。
(β)スニーカーを履いている子どもは、みんな女の子です。
(γ)帽子をかぶっている女の子もいます。
といふ「命題」は「矛盾」しない。
e.g.
太郎と次郎は、二人とも、野球帽をかぶっているが、スニーカーではなく、スパイクを履いている。
花子は帽子をかぶって、スニーカーを履いているが、桃子は、帽子をかぶらずに、スニーカーを履いている。
従って、
(13)(14)により、
(15)
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
であるからと言って、必ずしも、
(3)~∃x(帽子x&女子x)
(〃)帽子をかぶっている女の子はいません。
といふことには、ならない。
従って、
(02)(10)(11)(15)により、
(16)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α)帽子をかぶっていない子どもは、みんな女の子です
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふ「日本語」に「等しく」、
(α)帽子をかぶっていない子どもは、みんな女の子です
(β)スニーカーを履いている男の子は一人もいません。
といふ「命題」が「真(〇)」であるならば、
(1)男の子はみんな帽子をかぶっている。
だけが、必ず、「真(〇)」である。
従って、
(16)により、
(17)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
男の子も女の子もいます。
(α)帽子をかぶっていない子どもは、みんな女の子です。そして、
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
正しいのは(1)のみです。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182・183頁)。
といふ、ことになる。