(01)
142 ∃x(Fx)├ ∃x∃y(Fx&Fy)
1 (1) ∃x(Fx) A
2(2) Fa A
2(3) Fa&Fa 22&I
2(4) ∃y(Fa&Fy) 3EI
2(5)∃x∃y(Fx&Fy) 4EI
1 (6)∃x∃y(Fx&Fy) 125EE
(この結果は事実上、強化して相互導出可能にすることができる。)この連式の妥当性から、
ひとつだけの対象がFを持っているならば、∃x∃y(Fx&Fy)ということが帰結する。
言い換えると、相異なる変数「x」と「y」を用いる場合に、そのことから、それに対応する異なった対象が存在する、
ということは、帰結しないのである(E.J.レモン著、論理学初歩、竹尾治一郎・浅野楢英、1973年、210頁)。
然るに、
(02)
{xの変域}={a,b,c}
であるならば、
(ⅰ) ∃y(Fy)
(ⅱ)(Fa∨Fb∨Fc)
に於いて、
(ⅰ)=(ⅱ)である。
然るに、
(03)
「選言(∨)の真理表」により、
(ⅱ)(Fa∨Fb∨Fc)
といふ「論理式」は、
①(Fa )∨
②( Fb )∨
③( Fc)∨
④(Fa&Fb )∨
⑤(Fa &Fc)∨
⑥( Fb&Fc)∨
⑦(Fa&Fb&Fc)
といふ「論理式」に「等しい」。
従って、
(02)(03)により、
(04)
{xの変域}={a,b,c}
であるならば、
∃y(Fy)は、
といふ「論理式」は、
①(Fa)
② (Fb)
③ (Fc)
④(Fa&Fb )
⑤(Fa &Fc)
⑥( Fb&Fc)
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
然るに、
(05)
「冪等律」により、
①(Fa)
②(Fb)
③(Fc)
といふ「3つの論理式」は、それぞれ、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
といふ「3つの論理式」に「等しい」。
従って、
(04)(05)により、
(06)
{xの変域}={a,b,c}
であるならば、
∃y(Fy)は、
といふ「論理式」は、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④( Fb&Fc)
⑤(Fa &Fc)
⑥(Fa&Fb )
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
然るに、
(07)
{xの変域}={a,b,c}
であるならば、
∃x{∃y(Fx&Fy)}=
{(Fx&Fa)∨(Fx&Fb)∨(Fx&Fc)}∨
{(Fx&Fa)∨(Fx&Fb)∨(Fx&Fc)}∨
{(Fx&Fa)∨(Fx&Fb)∨(Fx&Fc)}
であるため、
∃x{∃y(Fx&Fy)}=
{(Fa&Fa)∨(Fa&Fb)∨(Fa&Fc)}∨
{(Fb&Fa)∨(Fb&Fb)∨(Fb&Fc)}∨
{(Fc&Fa)∨(Fc&Fb)∨(Fc&Fc)}
である。
然るに、
(08)
「交換法則」により、
①(Fa&Fb)
②(Fc&Fa)
③(Fa&Fc)
④(Fc&Fa)
⑤(Fb&Fc)
⑥(Fc&Fb)
に於いて、
①=④
②=⑤
③=⑥
従って、
(07)(08)により、
(09)
{xの変域}={a,b,c}
であるならば、
∃x{∃y(Fx&Fy)}=
{(Fa&Fa)∨(Fa&Fb) ∨(Fa&Fc)}∨
{(Fb&Fb)∨(Fb&Fc)}∨
{(Fc&Fc)}
である。
従って、
(09)により、
(10)
「交換法則・結合法則」により、
∃x{∃y(Fx&Fy)}=
{(Fa&Fa)∨(Fb&Fb)∨(Fc&Fc)}∨{(Fa&Fb)∨(Fa&Fc)∨(Fb&Fc)}
である。
然るに、
(11)
1 (1){(Fa&Fa)∨(Fb&Fb) ∨(Fc&Fc)}∨{(Fa&Fb)∨(Fa&Fc) ∨(Fb&Fc)} A
2 (2){(Fa&Fa)∨(Fb&Fb) ∨(Fc&Fc)} A
2 (3){(Fa&Fa)∨(Fb&Fb)}∨(Fc&Fc) 2結合法則
4 (4){(Fa&Fa)∨(Fb&Fb)} A
5 (5) (Fa&Fa) A
5 (6) Fa 5&E
5 (7) Fa∨Fb 6∨I
5 (8) Fa∨Fb∨Fc 7∨I
9 (9) (Fb&Fb) A
9 (ア) Fb 9&E
9 (イ) Fa∨Fb ア∨I
9 (ウ) Fa∨Fb∨Fc イ∨I
4 (エ) Fa∨Fb∨Fc 4589ウ∨E
オ (オ) (Fc&Fc) A
オ (カ) Fc オ&E
オ (キ) Fb∨Fc カ∨I
オ (ク) Fa∨Fb∨Fc キ∨I
2 (ケ) Fa∨Fb∨Fc 24エオク∨E
コ (コ) {(Fa&Fb)∨(Fa&Fc) ∨(Fb&Fc)} A
コ (サ) {(Fa&Fb)∨(Fa&Fc)}∨(Fb&Fc) コ結合法則
シ (シ) {(Fa&Fb)∨(Fa&Fc)} A
ス (ス) Fa&Fb A
ス (セ) Fa ス&E
ス (ソ) Fa∨Fb セ∨I
ス (タ) Fa∨Fb∨Fc ソ∨I
チ (チ) Fa&Fc A
チ (ツ) Fa チ&E
チ (テ) Fa∨Fb ツ∨I
チ (ト) Fa∨Fb∨Fc テ∨I
シ (ナ) Fa∨Fb∨Fc シスタチト∨E
ニ(ニ) (Fb&Fc) A
ニ(ヌ) Fb ニ&E
ニ(ネ) Fa∨Fb ヌ∨I
ニ(ノ) Fa∨Fb∨Fc ネ∨I
コ (ハ) Fa∨Fb∨Fc コシナニノ∨E
1 (ヒ) Fa∨Fb∨Fc 12ケコハ∨E
従って、
(11)により、
(12)
①{(Fa&Fa)∨(Fb&Fb)∨(Fc&Fc)}∨{(Fa&Fb)∨(Fa&Fc)∨(Fb&Fc)}
② (Fa∨Fb∨Fc)
に於いて、
①⇒② である。
従って、
(10)(11)(12)により、
(13)
{xの変域}={a,b,c}
であるならば、
∃x{∃y(Fx&Fy)}
といふ「論理式」も、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④( Fb&Fc)
⑤(Fa &Fc)
⑥(Fa&Fb )
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
従って、
(06)(13)により、
(14)
{xの変域}={a,b,c}
であるならば、
∃y(Fy)
といふ「論理式」と、
∃x{∃y(Fx&Fy)}
といふ「論理式」は、両方とも、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④( Fb&Fc)
⑤(Fa &Fc)
⑥(Fa&Fb )
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
従って、
(01)(14)により、
(15)
ひとつだけの対象が、性質Fを持っているならば、∃x{∃y(Fx&Fy)}ということが帰結する。
言い換えると、相異なる変数「x」と「y」を用いる場合に、そのことから、それに対応する異なった対象が存在する、
ということは、帰結しないのである(E.J.レモン著、論理学初歩、竹尾治一郎・浅野楢英、1973年、210頁)。
といふ「説明」は、「正しい」。
(01)
男子=男の子である。
~男子=男の子でない。
女子=女の子である。
~女子=女の子でない。
帽子=帽子をかぶっている。
~帽子=帽子をかぶっていない。
スニ=スニ―カーを履いている。
~スニ=スニーカーを履いていない。
とする。
従って、
(01)により、
(02)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α)帽子をかぶっていない子どもは、みんな女の子です
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふ「日本語」に「等しい」。
然るに、
(03)
(Γ)∀x(男子x⇔~女子x)
(〃)男の子であるならば、女の子ではなく、女の子でないならば、男の子である。
を「公理」とする。
然るに、
(04)
(α)
1 (1)∀x(~帽子x→女子x) A
1 (2) ~帽子a→女子a 1UE
(3)∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a UE
(5) 男子a→~女子a 4&E(Df.⇔)
6(6) 男子a A
6(7) ~女子a 56MPP
16(8) ~~帽子a 17MPP
16(9) 帽子a 8DN
1 (ア) 男子a→帽子a 69CP
1 (イ) ∀x(男子x→帽子x) アUI
(〃)
1 (1)∀x(男子x→ 帽子x) A
1 (2) 男子a→ 帽子a 1UE
(3)∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a UE
(5) ~女子a→男子a 4&E(Df.⇔)
6(6) ~帽子a A
16(7) ~男子a 26MTT
16(8) ~~女子a 57MTT
16(9) 女子a 8DN
1 (ア) ~帽子a→女子a 69CP
1 (イ)∀x(~帽子x→女子x) アUI
従って、
(02)(03)(04)により、
(05)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α) ∀x( 男子x→帽子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」に「等しい」。
然るに、
(06)
(β)
1 (1)~∃x(スニx& 男子x) A
1 (2)∀x~(スニx& 男子x) 1量化子の関係
1 (3) ~(スニa& 男子a) 2UE
1 (4) ~スニa∨~男子a 3ド・モルガンの法則
1 (5) スニa→~男子a 4含意の定義
(6) ∀x(男子x⇔~女子x) 公理
(7) 男子a⇔~女子a 6UE
(8) ~女子a→男子a 7&E(Df.⇔)
9 (9) ~男子a A
9 (ア) ~~女子a 89MTT
9 (イ) 女子a アDN
(ウ) ~男子a→女子a 9イCP
エ(エ) スニa A
1 エ(オ) ~男子a 5エMPP
1 エ(カ) 女子a ウオMPP
1 (キ) スニa→ 女子a エカCP
1 (ク) ∀x(スニx→ 女子x) キUI
(〃)
1 (1) ∀x(スニx→ 女子x) A
1 (2) スニa→ 女子a 1UE
(3) ∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a 3UE
(5) 男子a→~女子a 4&E(Df.⇔)
6 (6) 女子a A
6 (7) ~~女子a 6DN
6 (8) ~男子a 57MTT
(9) 女子a→~男子a 68MPP
ア(ア) スニa A
1 ア(イ) 女子a 2アMPP
1 ア(ウ) ~男子a 9イMPP
1 (エ) スニa→~男子a アウCP
1 (オ) ~スニa∨~男子a エ含意の定義
1 (カ) ~(スニa& 男子a) オ、ド・モルガンの法則
1 (キ)∀x~(スニx& 男子x) カUI
従って、
(05)(06)により、
(07)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x& スニx)
といふ「述語論理式」は、
(α) ∀x( 男子x→帽子x)
(β) ∀x( スニx→女子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」に「等しい」。
然るに、
(08)
(2)
1 (1)~∃x(帽子x& 女子x) A
1 (2)∀x~(帽子x& 女子x) 1量化子の関係
1 (3) ~(帽子a& 女子a) 2UE
1 (4) ~帽子a∨~女子a 3ド・モルガンの法則
1 (5) 帽子a→~女子a 4含意の定義
(6) ∀x(女子x⇔~男子x) 公理
(7) 女子a⇔~男子a 6UE
(8) ~男子a→女子a 7&E(Df.⇔)
9 (9) ~女子a A
9 (ア) ~~男子a 89MTT
9 (イ) 男子a アDN
(ウ) ~女子a→男子a 9イCP
エ(エ) 帽子a A
1 エ(オ) ~女子a 5エMPP
1 エ(カ) 男子a ウオMPP
1 (キ) 帽子a→ 男子a エカCP
1 (ク) ∀x(帽子x→ 男子x) キUI
(〃)
1 (1) ∀x(帽子x→ 男子x) A
1 (2) 帽子a→ 男子a 1UE
(3) ∀x(女子x⇔~男子x) 公理
(4) 女子a⇔~男子a 3UE
(5) 女子a→~男子a 4&E(Df.⇔)
6 (6) 男子a A
6 (7) ~~男子a 6DN
6 (8) ~女子a 57MTT
(9) 男子a→~女子a 68MPP
ア(ア) 帽子a A
1 ア(イ) 男子a 2アMPP
1 ア(ウ) ~女子a 9イMPP
1 (エ) 帽子a→~女子a アウCP
1 (オ) ~帽子a∨~女子a エ含意の定義
1 (カ) ~(帽子a& 女子a) オ、ド・モルガンの法則
1 (キ)∀x~(帽子x& 女子x) カUI
1 (ク)~∃x(帽子x& 女子x) キ量化子の関係
従って、
(07)(08)により、
(09)
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
(1) ∀x(男子x→帽子x)
(2)~∃x(帽子x&女子x)
(3)~∃x(帽子x&スニx)
といふ「論理式」は、
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
(1) ∀x(男子x→帽子x)
(2) ∀x(帽子x→男子x)
(3)~∃x(帽子x&スニx)
といふ「述語論理式」に「等しい」。
従って、
(05)~(09)により、
(10)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
(1) ∀x(男子x→帽子x)
(2) ∀x(帽子x→男子x)
(3)~∃x(帽子x&スニx)
といふ「述語論理式」に「等しい」。
従って、
(10)により、
(11)
(α) ∀x(男子x→帽子x)
(1) ∀x(男子x→帽子x)
(2) ∀x(帽子x→男子x)
に於いて、
(2)は(α)の「逆」であり、
(2)は(1)の「逆」であるが、「逆は、必ずしも、真ではない」。
従って、
(11)により、
(12)
(α)⇔(1)であるが、
(α)→(2)ではない。
然るに、
(13)
1 (1)∀x(男子x→帽子x) A
2 (2)∀x(スニx→女子x) A
3 (3)∃x(帽子x&スニx) A
1 (4) 男子a→帽子a 1UE
2 (5) スニa→女子a 2UE
6(6) 帽子a&スニa A
6(7) 帽子a 6&E
6(8) スニa 6&E
2 6(9) 女子a 57MPP
2 6(ア) 帽子a&女子a 79&I
2 6(イ)∃x(帽子x&女子x) アEI
23 (ウ)∃x(帽子x&女子x) 36イEE
従って、
(01)(02)(10)(13)により、
(14)
(α)∀x(男子x→帽子x)
(β)∀x(スニx→女子x)
(3)∃x(帽子x&女子x)
といふ「命題」、すなはち、
(α)男の子は、みんな帽子をかぶっています。
(β)スニーカーを履いている子どもは、みんな女の子です。
(γ)帽子をかぶっている女の子もいます。
といふ「命題」は「矛盾」しない。
e.g.
太郎と次郎は、二人とも、野球帽をかぶっているが、スニーカーではなく、スパイクを履いている。
花子は帽子をかぶって、スニーカーを履いているが、桃子は、帽子をかぶらずに、スニーカーを履いている。
従って、
(13)(14)により、
(15)
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
であるからと言って、必ずしも、
(3)~∃x(帽子x&女子x)
(〃)帽子をかぶっている女の子はいません。
といふことには、ならない。
従って、
(02)(10)(11)(15)により、
(16)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α)帽子をかぶっていない子どもは、みんな女の子です
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふ「日本語」に「等しく」、
(α)帽子をかぶっていない子どもは、みんな女の子です
(β)スニーカーを履いている男の子は一人もいません。
といふ「命題」が「真(〇)」であるならば、
(1)男の子はみんな帽子をかぶっている。
だけが、必ず、「真(〇)」である。
従って、
(16)により、
(17)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
男の子も女の子もいます。
(α)帽子をかぶっていない子どもは、みんな女の子です。そして、
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
正しいのは(1)のみです。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182・183頁)。
といふ、ことになる。
(01)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
男の子も女の子もいます。
(α)帽子をかぶっていない子どもは、みんな女の子です。そして、
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
正しいのは(1)のみです。
― 中略 ―
この問題の正解率は64.5%でした。入試で問われるスキルは何一つ問うていないのに、
国立Sクラスでは85%が正当した一方、私大B、Cクラスでは正当率が5割を切りました。
では、多くの高校生が憧れる私大Sクラスではどうだったか。国立Sクラスに比べて20ポイントも低い66.8%に留まりました。
どこの大学に入学できるかは、学習量でも知識でも運でもない、論理的な読解と推論の力ではないのか、6000枚の答案をみているうちに、私は確信するようになりました。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
然るに、
(02)
(α)帽子をかぶっていない子どもは、みんな女の子です。そして、
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
という「日本語」は、それぞれ、
(α)すべてのxについて(xが帽子をかぶっていないならば、xは女子である)。
(β)(スニーカーを履いているxであって、そのうえ、男子であるx)は存在しない。
(1)すべてのxについて(xが男子ならば、xは帽子をかぶっている)。
(2)(帽子をかぶっているxであって、そのうえ、女子であるx)は存在しない。
(3)(帽子をかぶっていて、その上、スニーカーを履いているx)は存在しない。
という「意味」である。
然るに、
(03)
(α)すべてのxについて(xが帽子をかぶっていないならば、xは女子である)。
(β)(スニーカーを履いているxであって、そのうえ、男子であるx)は存在しない。
(1)すべてのxについて(xが男子ならば、xは帽子をかぶっている)。
(2)(帽子をかぶっているxであって、そのうえ、女子であるx)は存在しない。
(3)(帽子をかぶっていて、その上、スニーカーを履いているx)は存在しない。
という「日本語」は、
(α) ∀x(~帽子x→女子x)。
(β)~∃x(スニx& 男子x)。
(1) ∀x(男子x→ 帽子x)。
(2)~∃x(帽子x& 女子x)。
(3)~∃x(帽子x& スニx)。
という「述語論理式」に「相当」する。
従って、
(02)(03)により、
(04)
(α)帽子をかぶっていない子どもは、みんな女の子です。
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
という「日本語」は、それぞれ、
(α) ∀x(~帽子x→女子x)。
(β)~∃x(スニx& 男子x)。
(1) ∀x(男子x→ 帽子x)。
(2)~∃x(帽子x& 女子x)。
(3)~∃x(帽子x& スニx)。
という「述語論理式」に「相当」する。
然るに、
(05)
(Γ) ∀x(男子x⇔~女子x)
(〃)∀x{(男子x→~女子x)&(~女子x→男子x)}
(〃)男子ならば、そのときに限って、女子ではない。
という「命題」を、「公理」とする。
然るに、
(06)
「結論」を先に言うと、
(α)帽子をかぶっていない子どもは、みんな女の子です。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
に於いて、
(α)と(1)は「対偶」であり、
(1)と(2)は「 逆 」であり、
(1)と(3)も「 逆 」であり、そのため、
(1)〇
(2)✕
(3)✕
然るに、
(07)
(α)
1 (1)∀x(~帽子x→女子x) A
1 (2) ~帽子a→女子a 1UE
(3)∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a UE
(5) 男子a→~女子a 4&E(Df.⇔)
6(6) 男子a A
6(7) ~女子a 56MPP
16(8) ~~帽子a 17MPP
16(9) 帽子a 8DN
1 (ア) 男子a→帽子a 69CP
1 (イ) ∀x(男子x→帽子x) アUI
(1)
1 (1)∀x(男子x→ 帽子x) A
1 (2) 男子a→ 帽子a 1UE
(3)∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a UE
(5) ~女子a→男子a 4&E(Df.⇔)
6(6) ~帽子a A
16(7) ~男子a 26MTT
16(8) ~~女子a 57MTT
16(9) 女子a 8DN
1 (ア) ~帽子a→女子a 69CP
1 (イ)∀x(~帽子x→女子x) アUI
従って、
(04)(07)により、
(08)
(α)∀x(~帽子x→女子x)
(1)∀x(男子x→ 帽子x)
に於いて、すなわち、
(α)帽子をかぶっていない子どもは、みんな女の子です(男の子ではない)。
(1)男の子(女の子でない子ども)はみんな帽子をかぶっている。
に於いて、
(α)と(1)は「対偶」であり、それ故、
(α)と(1)は「等しい」。
然るに、
(09)
(2)
1 (1)~∃x(帽子x&女子x) A
1 (2)∀x~(帽子x&女子x) 1量化子の関係
1 (3) ~(帽子a&女子a) 1UE
1 (4) ~帽子a∨~女子a 3ド・モルガンの法則
1 (5) 帽子a→~女子a 4含意の定義
(6)∀x(男子x⇔~女子x) 公理
(7) 男子a⇔~女子a 6UE
(8) ~女子a→男子a 7&E(Df.⇔)
9(9) 帽子a A
19(ア) ~女子a 59MPP
19(イ) 男子a 8アMPP
1 (ウ) 帽子a→ 男子a 9イCP
1 (エ)∀x(帽子x→ 男子x) ウUI
(Ⅱ)
1 (1)∀x(帽子x→ 男子x) A
1 (2) 帽子a→ 男子a 1UE
(3)∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a 3UE
(5) 男子a→~女子a 4&E(Df.⇔)
6(6) 帽子a A
16(7) 男子a 26MPP
16(8) ~女子a 57MPP
1 (9) 帽子a→~女子a 68CP
1 (ア) ~帽子a∨~女子a 9含意の定義
1 (イ) ~(帽子a&女子a) ア、ド・モルガンの法則
1 (ウ)∀x~(帽子x&女子x) イUI
1 (エ)~∃x(帽子x&女子x) ウ量化子の関係
従って、
(09)により、
(10)
(2)~∃x(帽子x&女子x)
(Ⅱ) ∀x(帽子x→男子x)
に於いて、
(2)=(Ⅱ) である。
従って、
(11)
(2)~∃x(帽子x&女子x)
(Ⅱ) ∀x(帽子x→男子x)
(1) ∀x(男子x→帽子x)
に於いて、
(2)=(Ⅱ)であって、
(Ⅱ)は(1)の「逆」であるが、「逆は必ずしも、〇(真)ではない」。
従って、
(04)(11)により、
(12)
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
に於いて、 (2)は(1)の「逆」であるが、「逆は必ずしも、〇(真)ではない」。
然るに、
(13)
(β)スニーカーを履いている男の子は一人もいません。
1 (1)~∃x(スニx&男子x) A
1 (2)∀x~(スニx&男子x) 1量化子の関係
1 (3) ~(スニa&男子a) 1UE
1 (4) ~スニa∨~男子a 3ド・モルガンの法則
1 (5) スニa→~男子a 4含意の定義
(6)∀x(男子x⇔~女子x) 公理
(7) 男子a⇔~女子a 6UE
(8) ~男子a→ 女子a 7&E(Df.⇔)
9(9) スニa A
19(ア) ~男子a 59MPP
19(イ) 女子a 8アMPP
1 (ウ) スニa→ 女子a 9イCP
1 (エ)∀x(スニx→ 女子x) ウUI
(B)スニーカーを履いている子は、みんな女子です。
1 (1)∀x(スニx→ 女子x) A
1 (2) スニa→ 女子a 1UI
(3)∀x(男子x⇔~女子x) 公理
(4) 男子a⇔~女子a 3UE
(5) 男子a→~女子a 4&E(Df.⇔)
6 (6) 女子a A
6 (7) ~~女子a 6DN
6 (8) ~男子a 57MTT
(9) 女子a→~男子a 68CP
ア(ア) スニa A
1 ア(イ) 女子a 2アMPP
1 ア(ウ) ~男子a 9イMPP
1 (エ) スニa→~男子a アウCP
1 (オ) ~スニa∨~男子a エ含意の定義
1 (カ) ~(スニa&男子a) オ、ド・モルガンの法則
1 (キ)∀x~(スニx&男子x) カUI
1 (ク)~∃x(スニx&男子x) キ、量化子の関係
従って、
(13)により、
(14)
(β)~∃x(スニx&男子x)
(B) ∀x(スニx→女子x)
に於いて、すなわち、
(β)スニーカーを履いている男の子は一人もいません。
(B)スニーカーを履いている子は、みんな女子です。
に於いて、
(β)=(B)である。
然るに、
(15)
(B)スニーカーを履いている子は、みんな女子です。
というのであれば、
(3)帽子をかぶっていて、しかも「スニーカーを履いている子ども」は一人もいない。
ということは、
(3)帽子をかぶっていて、しかも「女の子である子ども」は一人もいない。
ということに、「他ならない」。
然るに、
(16)
一々、「計算」はしないものの、
(3)帽子をかぶっていて、しかも「女の子である子ども」は一人もいない。
ということは、
(Ⅱ)帽子をかぶっている子はみんな男の子です。
(〃)∀x(帽子x→男子x)
ということに、「他ならない」。
従って、
(12)~(16)により、
(17)
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
に於いて、 (2)は(1)の「逆」であるが、「逆は必ずしも、〇(真)ではない」。
というだけでなく、
(1)男の子はみんな帽子をかぶっている。
(3)帽子をかぶっていて、しかも「スニーカーを履いている子ども」は一人もいない。
(3)は(1)の「逆」であるが、「逆は必ずしも、〇(真)ではない」。
従って、
(04)(05)(06)(17)により、
(18)
もう一度、確認すると、
(α)帽子をかぶっていない子どもは、みんな女の子です。
(β)スニーカーを履いている男の子は一人もいません。
(Γ)男子ならば、そのときに限って、女子ではない。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
という「日本語」は、それぞれ、
(α) ∀x(~帽子x→女子x)。
(β)~∃x(スニx& 男子x)。
(Γ) ∀x(男子x⇔~女子x)。
(1) ∀x(男子x→ 帽子x)。
(2)~∃x(帽子x& 女子x)。
(3)~∃x(帽子x& スニx)。
という「述語論理式」に「相当」し、それ故、
(α)帽子をかぶっていない子どもは、みんな女の子です。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
に於いて、
(α)と(1)は「対偶」であり、
(1)と(2)は「 逆 」であり、
(1)と(3)も「 逆 」であり、そのため、
(1)〇
(2)✕
(3)✕
である。
(01)(18)により、
(19)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
男の子も女の子もいます。
(α)帽子をかぶっていない子どもは、みんな女の子です。そして、
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
正しいのは(1)のみです。
といふ「問題」は、「述語論理」によって、「解答」可能である。
然るに、
(20)
(述語)論理式にはこれまで述べたように、厳密な(形式的な)意味論が与えられるから、自然言語文も、翻訳を介して意味論に法っとった解釈が与えられ、したがって、間接的であるが、自然言語に意味論が与えられることになる(長尾真・淵一博、論理と意味、1983年、167頁)。
(21)
さて、統計的な手法が登場する以前、自然言語処理の技術を使う自動翻訳や質疑応答の分野では、研究者たちはAIに文法などの言葉のルールを覚えさせ、論理的、演繹的な手法で精度を上げようとしました。けれど、その手法は何度試みても失敗を繰り返しました(AI vs. 教科書が読めない子供たち、新井紀子、2018年、124頁)。
従って、
(19)(20)(21)により、
(22)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
というような「問題」を、「生成AI」は、「(述語)論理式」を用いて、「解答」することは、出来ない。
(01)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
男の子も女の子もいます。
帽子をかぶっていない子どもは、みんな女の子です。そして、
スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
正しいのは(1)のみです。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
従って、
(01)により、
(02)
「教科書が読めない子供たち」によると、
(ⅰ)帽子をかぶっていないならば、女子である。従って、
(ⅱ)男子であるならば、帽子をかぶっている。
という『推論』は、「妥当」である。
然るに、
(03)
1 (1) ∀x(~帽子x→女子x) A
2 (2) ∀x(女子x→~男子x) A
3 (3) ~∀x(男子x→帽子x) A
1 (4) ~帽子a→女子a 1UE
2 (5) 女子a→~男子a 2UE
3 (6) ∃x~(男子x→帽子x) 3量化子の関係
7(7) ~(男子a→帽子a) A
7(8) ~(~男子a∨帽子a) 7含意の定義
7(9) 男子a&~帽子a 8ド・モルガンの法則
7(ア) ~帽子a 9&E
1 7(イ) 女子a 4アMPP
12 7(ウ) ~男子a 5イMPP
12 7(エ) 男子a 9&E
12 7(オ) 男子a&~男子a イウ&I
1 7(カ)~∀x(女子x→~男子x) 2オRAA
1 3 (キ)~∀x(女子x→~男子x) 37カEE
123 (ク)~∀x(女子x→~男子x)&
∀x(女子x→~男子x) 2キ&I
12 (ケ)~~∀x(男子x→帽子x) 3クRAA
12 (コ) ∀x(男子x→帽子x) ケDN
従って、
(03)により、
(04)
(ⅰ)∀x(~帽子x→女子x)。然るに、
(ⅱ)∀x(女子x→~男子x)。従って、
(ⅲ) ∀x(男子x→帽子x)。
という『推論』、すなはち、
(ⅰ)すべてのxについて(xが帽子をかぶっていないならば、xは女子である)。然るに、
(ⅱ)すべてのxについて(xが女子であるならば、xは男子ではない)。従って、
(ⅲ)すべてのxについて(xが男子であるならば、xは帽子をかぶっている)。
という『推論』、すなはち、
(ⅰ)帽子をかぶっていないならば、女子である。然るに、
(ⅱ)女子であるならば、男子ではない。従って、
(ⅲ)男子であるならば、帽子をかぶっている。
という『推論』は、「妥当」である。
従って、
(04)により、
(05)
「述語論理」からすれば、
(ⅰ)帽子をかぶっていないならば、女子である。然るに、
(ⅱ)女子であるならば、男子ではない。従って、
(ⅲ)男子であるならば、帽子をかぶっている。
という『推論』は、「妥当」であるが、
(ⅰ)帽子をかぶっていないならば、女子である。従って、
(ⅲ)男子であるならば、帽子をかぶっている。
という『推論』は、「妥当」ではない。
従って、
(02)(05)により、
(06)
「述語論理」からすれば、
「AI vs. 教科書が読めない子供たち、新井紀子、2018年」による、
(ⅰ)帽子をかぶっていないならば、女子である。従って、
(ⅱ)男子であるならば、帽子をかぶっている。
という『推論』は、
(ⅱ)女子であるならば、男子ではない。
という「前提」が、「省略」されているため、「妥当」ではない。
従って、
(06)により、
(07)
「AI」に対して、
「述語論理」による『推論』をさせる場合は、
「AI」に対して、
「人間の5歳児には常識である」所の、
(ⅱ)女子であるならば、男子ではない。
という「常識」を、「予め、教えなければ、ならない」。
従って、
(07)により、
(08)
「生成AI」が、
「人間の5歳児なみに、賢くなる」ためには、
「生成AI」は、
「人間の5歳児なみの、常識を、獲得しなければ、ならない」。
然るに、
(09)
「人間の5歳児は、知らないことが多い」としても、
「人間の5歳児には、様々な、実体験が有り」、その一方で、
「人間の5歳児の知識としては、例えば、ウィキペディアから得たものは、ほとんど無い。」
従って、
(09)により、
(10)
「生成AI」が、
「人間の5歳児と同じように、賢くなること」は、「不可能」である。
(01)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
男の子も女の子もいます。
帽子をかぶっていない子どもは、みんな女の子です。そして、
スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
― 中略 ―
この問題の正解率は64.5%でした。入試で問われるスキルは何一つ問うていないのに、
国立Sクラスでは85%が正当した一方、私大B、Cクラスでは正当率が5割を切りました。
では、多くの高校生が憧れる私大Sクラスではどうだったか。国立Sクラスに比べて20ポイントも低い66.8%に留まりました。
どこの大学に入学できるかは、学習量でも知識でも運でもない、論理的な読解と推論の力ではないのか、6000枚の答案をみているうちに、私は確信するようになりました。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
然るに、
(01)により、
(02)
(ⅰ)帽子をかぶっていない子どもは、みんな女の子です。
(ⅱ)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
然るに、
(03)
男子={(一郎)、(次郎)、(三郎)}
女子={ 花子 、 桃子、 (梅子)}
に於いて、
帽子をかぶっている ={(一郎)、(次郎)、(三郎)、(梅子)}
帽子をかぶっていない={ 花子、 桃子}
とする。
従って、
(03)により、
(04)
(ⅰ)帽子をかぶっていない子どもは、みんな女の子(花子、桃子)です。
(1)男の子(一郎、次郎、三郎)はみんな帽子をかぶっている。
といふ「命題」は、「真(〇)」である。
然るに、
(03)により、
(05)
帽子をかぶっている={(一郎)、(次郎)、(三郎)、(梅子)}
であるため、
帽子をかぶっている≒{(梅子)}
であって、それ故、
(2)帽子をかぶっている女の子はいない。
(〃)梅子は女の子ではない。
といふ「命題」は、「偽(✕)」である。
然るに、
(01)により、
(06)
(ⅱ)スニーカーを履いている男の子は一人もいません。
といふことは、
帽子をかぶっている={(一郎)、(次郎)、(三郎)、(梅子)}
といふ「4人」の内の{(一郎)、(次郎)、(三郎) }といふ「3人」は、「スニーカーを履いていない」。
といふことである。
然るに、
(07)
帽子をかぶっている={(一郎)、(次郎)、(三郎)、(梅子)}
といふ「4人」の内の{(一郎)、(次郎)、(三郎) }といふ「3人」は、「スニーカーを履いていない」。
といふことは、
帽子をかぶっている≒{(梅子)}
に関しては、「スニーカーを履いているかも、知れない」。
といふことである。
然るに、
(03)(07)により、
(08)
帽子をかぶっている≒{(梅子)}
に関しては、「スニーカーを履いているかも、知れない」。
といふことは、
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふのではなく、
(3)帽子をかぶっていて、しかもスニーカーを履いている子ども(梅子)がいる。
かも知れない。
といふ、ことである。
従って、
(08)により、
(09)
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふ「命題」は、「偽(✕)」である。
従って、
(01)~(09)により、
(10)
(ⅰ)帽子をかぶっていない子どもは、みんな女の子です。
(ⅱ)スニーカーを履いている男の子は一人もいません。
といふ「命題」が「真(〇)」であるならば、
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
に於いて、
(1)だけが、「真(〇)」であるが、「新井紀子」先生の「解答」も、
(1)だけが、「真(〇)」である。
然るに、
(11)
この問題は、
(ⅰ)
1 (1)~∃x(女子x& 男子x) A
2 (2) 女子a& 男子a A
2 (3) ∃x(女子x& 男子x) 2EI
12 (4)~∃x(女子x& 男子x)&
∃x(女子x& 男子x) 13&I
1 (5) ~(女子a& 男子a) 24RAA
6 (6) 女子a A
7(7) 男子a A
67(8) 女子a& 男子a 67&I
1 67(9) ~(女子a& 男子a)&
(女子a& 男子a) 58&I
1 6 (ア) ~男子a 7RAA
1 (イ) 女子a→~男子a 6アCP
1 (ウ ∀x(女子x→~男子x) イUI
(ⅱ)
1 (1) ∀x(女子x→~男子x) A
2 (2) ∃x(女子x& 男子x) A
1 (3) 女子a→~男子a 1UE
3 (4) 女子a&男子a A
3 (5) 女子a 4&E
1 3 (6) ~男子a 35MPP
3 (7) 男子a 4&E
1 3 (8) ~男a&男子a 67&I
3 (9)~∀x(女子x→~男子x) 18RAA
2 (ア)~∀x(女子x→~男子x) 239EE
12 (イ)~∀x(女子x→~男子x)&
∀x(女子x→~男子x) 1ア&I
1 (ウ)~∃x(女子x& 男子x) 2イRAA
という「計算」に拘っていると、「頭がぐちゃぐちゃになる」ものの、
男子={(一郎)、(次郎)、(三郎)}
女子={ 花子 、 桃子、 (梅子)}
という風に、「書いて」みると、「極めて、簡単に、答えが出る」。
従って、
(12)
「生成AI君」に対しても、「このような解法」を、勧めたい。
(01)
「マイクロソフトのAI」に「質問(兎は象ですか?)」をしたところ、「AI」は「パニック」を起こしたのか??
然るに、
(02)
さて、統計的な手法が登場する以前、自然言語処理の技術を使う自動翻訳や質疑応答の分野では、研究者たちはAIに文法などの言葉のルールを憶えさせ、論理的、演繹的な手法で精度を上げようとしました(AI vs. 教科書が読めない子供たち、新井紀子、2018年、124頁)。
然るに、
(03)
Prologの文は「述語論理」にならって節(Clause)と呼ぶことが多いのでここでも節と呼ぶことににします。一つの節は、一つの述語が、どういう場合に真になるかを記述しています。もっとも単純な例として、
father(mary,henry).
という節は、fatherという述語がmary,henryという引数に対して成立するということを表しています(淵一博 監修、第五世代コンピューター入門、1987年、11頁)。
然るに、
(04)
第五世代コンピュータ(だいごせだいコンピュータ)計画とは、1982年から1992年にかけて日本の通商産業省(現経済産業省)所管の新世代コンピュータ技術開発機構(ICOT)が進めた国家プロジェクトで、いわゆる人工知能コンピュータの開発を目的に総額540億円の国家予算が投入された(ウィキペディア)。
従って、
(02)(03)(04)により、
(05)
「(統計的な手法が登場する以前の、)第五世代コンピュータ計画」の「時代」には、
1 (1) ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
2 (2) ∀x{兎x→∃z(耳zx&~鼻zx&長z)} A
3 (3) ∃x(象x&兎x) A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃z(耳za&~鼻za&長z) 2UE
6 (6) 象a&兎a A
6 (7) 象a 6&E
6 (8) 兎a 6&E
1 6 (9) ∃y(鼻ya&長y)&∀z(~鼻za→~長z) 47MPP
1 6 (ア) ∀z(~鼻za→~長z) 9&E
1 6 (イ) ~鼻ba→~長b アUE
2 6 (ウ) ∃z(耳za&~鼻za&長z) 58MPP
エ (エ) 耳ba&~鼻ba&長b A
エ (オ) ~鼻ba エ&E
エ (カ) 長b エ&E
1 6エ (キ) ~長b イオMPP
1 6エ (ク) 長b&~長b カキ&I
12 6 (ケ) 長b&~長b ウエクEE
123 (コ) 長b&~長b 36ケEE
12 (サ)~∃x(象x& 兎x) 3コRAA
シ (シ) ~(象a→~兎a) A
シ (ス) ~(~象a∨~兎a) シ含意の定義
シ (セ) 象a& 兎a ス、ド・モルガンの法則
シ (ソ) ∃x(象x& 兎x) セEI
12 シ (タ)~∃x(象x& 兎x)&∃x(象x& 兎x) サソ&I
12 (チ) ~~(象a→~兎a) シタRAA
12 (ツ) (象a→~兎a) チDN
テ(テ) 兎a A
テ(ト) ~~兎a テDN
12 テ(ナ) ~象a ツトMTT
12 (ニ) 兎a→~象a テナCP
12 (ヌ) ∀x(兎x→~象x) ニUI
といふ「述語計算」を用ひて、「コンピューター」に対して、
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎の耳は長いが、耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論(演繹)」をさせようとしてゐた。
然るに、
(05)により、
(06)
2(2) ∀x{兎x→∃z(耳zx&~鼻zx&長z)} A
から、 「~鼻zx(耳は鼻でない)」を「除いた」場合は、
12(ヌ) ∀x(兎x→~象x) ニUI
12(〃) 兎は象ではない。 ニUI
といふ「結論」を得ることは、出来ない。
従って、
(05)(06)により、
(07)
(ⅱ)兎の耳は鼻ではない。
といふ「条件」が示されてはゐない。
といふ「理由」により、
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎は耳が長い。従って、
(ⅲ)兎は象ではない。
といふ「推論(演繹)」は、「述語論理」としては、「間違ひ」である。
然るに、
(08)
(ⅱ)兎の耳は鼻ではない。
(〃)王様の耳はロバの耳である。
(〃)パンの耳は食べられる。
といふことは、「(一々、断らなくとも)、常識」である。
従って、
(08)~(08)により、
(09)
「人間」にではなく、
「第五世代コンピュータ」に対して、次に、
(ⅰ)ロバは耳が長い。然るに、
(ⅱ)王様は耳が短い。従って、
(ⅲ)王様はロバではない。
といふ「推論(演繹)」を行わせようとするならば、
(ⅱ)(童話の中では)王様の耳は長いこともあるが、
(〃)(童話の中でも)パンの耳は、王様の耳ではない。
といふこと、「その他」を、予め、「記述」をしておく「必要」が有る。
従って、
(02)(07)(08)(09)により、
(10)
「述語論理」を用ひて、
「第五世代コンピュータ」に対して、
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎は耳が長い。従って、
(ⅲ)兎は象ではない。
といふ「推論(演繹)」を行はせようとすると、
「文法などの言葉のルール」の他に、「大量の常識」を、
「第五世代コンピュータ」に対して、「教へなければ、ならない」。
然るに、
(11)
国語はどう考えても正攻法でなんとかできるとは思えません。そこで国語チームが試みたのは、センター国語試験で最も配点の大きい傍線部分の問題に対し、文字の重複などごく表面的なことから選択肢を選ぶという「荒業」でした。単純に言うと、傍線のついている部分とその前の段落の文を取って来て、「『あ』という文字が何回、『山』という文字が何回」と同じ文字の数を数えて、選択肢のほうも同様に数えて、いちばん重複の多い選択肢を選ぶという方法を採用したのです。文の意味どころか、単語の意味も調べません(AI vs. 教科書が読めない子供たち、 新井紀子、2018年、124頁)。
然るに、
(12)
「グーグルのAI」に「質問(兎は象ですか?)」をしたところ、 然るに、
(13)
論理式にはこれまで述べたように、厳密な(形式的な)意味論が与えられるから、自然言語文も、翻訳を介して意味論に法っとった解釈が与えられ、したがって、間接的であるが、自然言語に意味論が与えられることになる(長尾真・淵一博、論理と意味、1983年、167頁)。
然るに、
(14)
他方、アメリカの企業は日本の失敗を学びました。論理的な手法で自動翻訳などのAIを開発することに見切りをつけ、統計的手法に梶を切り、グーグル翻訳やワトソンなどで成果を上げたのです(AI vs. 教科書が読めない子供たち、新井紀子、2018年、90頁)。
然るに、
(15)
さて、統計的な手法が登場する以前、自然言語処理の技術を使う自動翻訳や質疑応答の分野では、研究者たちはAIに文法などの言葉のルールを覚えさせ、論理的、演繹的な手法で精度を上げようとしました。けれど、その手法は何度試みても失敗を繰り返しました(AI vs. 教科書が読めない子供たち、新井紀子、2018年、124頁)。
従って、
(02)(12)~(15)により、
(16)
①「論理」と「意味」による「AI技術」と、
②「統計的な手法」による、「AI技術」とが有って、
① では、「難しかった」、または、「成功」しなかった所の、
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎は耳が長い。従って、
(ⅲ)兎は象ではない。
といふ「推論」は、
② では、「容易」である。
といふ、ことになる。
然るに、
(17)
言ふ迄も無く、「我々(人間)」は、「論理と意味」だけを用ひて、「推論(演繹)」をする。
従って、
(18)
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎は耳が長い。従って、
(ⅲ)兎は象ではない。
といふ「推論(演繹)」する際に、「我々(人間)」は、「統計的な手法」など、「用ひない」。
従って、
(19)
「AI」は、「我々(人間)のやうに、考へはしない」し、と言ふよりも、固より、 「AI」は、「何も考えてはいない!!」
然るに、
(20)
最近は、その努力を怠っているものの、私は、以前から、曾祖父のやうに、「漢文か書ける」ようになりたかったものの、その一方で、「AIが発達すれば、人間が書かなくとも、AIが漢文を書くようになる」のではと、思ってゐた。
然るに、
(21)
「漢文」には、「ネイティブ・ライター」はゐない上に、「(「東大合格を目指すAI」にとって)さらに過酷な状況にあるのは古文や漢文です(AI vs. 教科書が読めない子供たち、新井紀子、2018年、84頁)」といふこともあって、「もう一度、漢文の勉強を、趣味にしよう」と、思ってゐるが、このところ、「私も、いくらか、忙しい」。