日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(1352)「ド・モルガンの法則と、命題論理と、述語論理と、量化子の関係」(Ⅱ)。

2024-12-18 11:43:35 | 論理

「昨日(令和6年12月17日)の記事」を書き直します。
(01)
(ⅰ){xの変域}={aさん、bさん、cさん}
(ⅱ) 述語文字F=フランス人である。
であるとして、
① ∃x(Fx)
②(Fa∨Fb∨Fc)
③ あるxはFである。
④(aさんはフランス人であるか、または、bさんはフランス人であるか、または、cさんはフランス人である)。
に於いて、
①=②=③=④ である。
然るに、
(02)
(ⅰ){xの変域}={aさん、bさん、cさん}
(ⅱ) 述語文字F=フランス人である。
であるとして、
⑤ ~∀x(~F)
⑥ ~(~Fa&~Fb&~Fc)
⑦ すべてのxがFでない、というふわけではない。
⑧(aさんがフランス人ではなく、その上、bさんもフランス人ではなく、その上、cさんもフランス人でない)といふことは無い。
に於いて、
⑤=⑥=⑦=⑧ である。
然るに、
(03) (ⅰ)
1     (1)   P∨ Q∨ R   A
 2    (2)  ~P&~Q&~R   A
1     (3)  (P∨ Q)∨R   1結合法則
  4   (4)  (P∨ Q)     A
   5  (5)   P         A
 2    (6)  ~P         2&E
 2 5  (7)   P&~P      56&I
   5  (8)~(~P&~Q&~R)  27RAA
    9 (9)      Q      A
 2    (ア)     ~Q      2&E
 2  9 (イ)   Q&~Q      9ア&I
    9 (ウ)~(~P&~Q&~R)  29RAA
  4   (エ)~(~P&~Q&~R)  4589ウ∨E
     オ(オ)         R   A
 2    (カ)        ~R   2&E
 2   オ(キ)      R&~R   オカ&I
     オ(ク)~(~P&~Q&~R)  2キRAA
1     (ケ)~(~P&~Q&~R)  34エオク∨E
12    (コ)~(~P&~Q&~R)&
          (~P&~Q&~R)  2ケ&I
1     (サ)~(~P&~Q&~R)  2コRAA
(ⅴ)
1    (1) ~(~P&~Q&~R)  A
 2   (2) ~( P∨ Q∨ R)  A
  3  (3)    P         A
  3  (4)    P∨ Q      3∨I
  3  (5)    P∨ Q∨ R   34∨I
 23  (6) ~( P∨ Q∨ R)&
          ( P∨ Q∨ R)  25&I
 2   (7)   ~P         36RAA
   8 (8)       Q      A
   8 (9)    P∨ Q      8∨I
   8 (ア)    P∨ Q∨ R   9∨I
 2 8 (イ) ~( P∨ Q∨ R)&
          ( P∨ Q∨ R)  2ア&I
 2   (ウ)      ~Q      8イ&I
 2   (エ)   ~P&~Q      7ウ&I
    オ(オ)          R   A
    オ(カ)       Q∨ R   オ∨I
    オ(キ)    P∨ Q∨ R   ∨I
 2  オ(ク) ~( P∨ Q∨ R)&
          ( P∨ Q∨ R)  2キ&I
 2   (ケ)         ~R   オクRAA
 2   (コ)   ~P&~Q&~R   エケ&I
12   (サ) ~(~P&~Q&~R)&
          (~P&~Q&~R)  1コ&I
1    (シ)~~( P∨ Q∨ R)  2サRAA
1    (ス)  ( P∨ Q∨ R)  シDN
従って、
(03)により、
(04)
①    P∨ Q∨ R
⑤ ~(~P&~Q&~R)
といふ「命題論理式」に於いて、
①=⑤ は「ド・モルガンの法則」である
従って、
(04)により、
(05)
P=Fa
Q=Fb
R=Fc
といふ「代入」により、
①  ( Fa∨ Fb∨ Fc)
⑤ ~(~Fa&~Fb&~Fc)
といふ「命題論理式に於いて、
①=⑤ は、「ド・モルガンの法則」である。
従って、
(01)~(05)により、
(06)
① ∃x(Fx)
②(Fa∨Fb∨Fc)
③ あるxはFである。
④(aさんはフランス人であるか、または、bさんはフランス人であるか、または、cさんはフランス人である)。
⑤ ~∀x(~F)
⑥ ~(~Fa&~Fb&~Fc)
⑦ すべてのxがFでない、というふわけではない。
⑧(aさんがフランス人ではなく、その上、bさんもフランス人ではなく、その上、cさんもフランス人でない)といふことは無い。
に於いて、
①=②=③=④=⑤=⑥=⑦=⑧ は、「ド・モルガンの法則」である。
従って、
(07)により、
(08)
(ⅰ)
1  (1) ∃x( Fx) A
 2 (2) ∀x(~Fx) A
  3(3)     Fa  A
 2 (4)    ~Fa  1UE
 23(5) Fa&~Fa  34&I
  3(6)~∀x(~Fx) 25RAA
12 (7)~∀x(~Fx) 13EE
(ⅴ)
1  (1) ~∀x(~Fx)  A
 2 (2) ~∃x( Fx)  A
  3(3)      Fa   A
  3(4)  ∃x( Fx)  1EI
 23(5) ~∃x( Fx)&
        ∃x( Fx)  24&I
 2 (6)     ~Fa   35RAA
 2 (7)  ∀x(~Fx)  6UI
12 (8) ~∀x(~Fx)&
        ∀x(~Fx)  17&I
1  (9)~~∀x(~Fx)  28RAA
1  (ア)  ∀x(~Fx)  9DN
といふ「述語計算」は、「ド・モルガンの法則」である。
従って、
(08)により、
(09)
①  ∃x( Fx)=あるxはFである。
∀x(Fx)=すべてのxがFでない、といふわけではない
に於いて、
①=⑤ といふ「量化子の関係」は、「ド・モルガンの法則」である。


(1350)「代表的選言項(typical disjunct)」について。

2024-12-14 14:04:39 | 論理

(01)
(ⅰ)
1   (1)∃x(Fx∨Gx)     A
 2  (2)   Fa∨Ga      A
  3 (3)   Fa         A
  3 (4)∃x(Fx)        3EI
  3 (5)∃x(Fx)∨∃x(Gx) 4∨I
   6(6)      Ga      A
   6(7)       ∃x(Gx) 6EI
   6(8)∃x(Fx)∨∃x(Gx) 7∨I
 2  (9)∃x(Fx)∨∃x(Gx) 23568∨I
1   (ア)∃x(Fx)∨∃x(Gx) 129EE
(ⅱ)
1    (1)∃x(Fx)∨∃x(Gx) A
 2   (2)∃x(Fx)        A
  3  (3)   F         A
  3  (4)   Fa∨Ga      3∨I
  3  (5)∃x(Fx∨Gx)     4EI
 2   (6)∃x(Fx∨Gx)     235EE
   7 (7)       ∃x(Gx) A
    8(8)          Ga  A
    8(9)       Fa∨Ga  8∨I
    8(ア)    ∃x(Fx∨Gx) 9EI
   7 (イ)    ∃x(Fx∨Gx) 78アEE
1    (ウ)∃x(Fx∨Gx)     1267イ∨E
従って、
(01)により、
(02)
① ∃x(Fx∨Gx)
② ∃x(Fx)∨∃x(Gx)
に於いて、
①=② である。
従って、
(02)により、
(03)
例へば、
① ある人は(フランス人であるか、または、ドイツ人である)。
② ある人は(フランス人である)か、または、ある人は(ドイツ人である)。
に於いて、
①=② である。
然るに、
(01)により、
(04)
(ⅰ)
1   (1)∃x(Fx∨Gx)     A
 2  (2)   Fa∨Ga      A
  3 (3)   Fa         A
  3 (4)∃x(Fx)        3EI
  3 (5)∃x(Fx)∨∃x(Gx) 4∨I
   6(6)      Ga      A
   6(7)       ∃x(Gx) 6EI
   6(8)∃x(Fx)∨∃x(Gx) 7∨I
 2  (9)∃x(Fx)∨∃x(Gx) 23568∨I
1   (ア)∃x(Fx)∨∃x(Gx) 129EE
(ⅱ)
1    (1)∃x(Fx)∨∃x(Gx) A
 2   (2)∃x(Fx)        A
  3  (3)   F         A
  3  (4)   Fa∨Ga      3∨I
  3  (5)∃x(Fx∨Gx)     4EI
 2   (6)∃x(Fx∨Gx)     235EE
   7 (7)       ∃x(Gx) A
    8(8)          Ga  A
    8(9)       Fa∨Ga  8∨I
    8(ア)    ∃x(Fx∨Gx) 9EI
   7 (イ)    ∃x(Fx∨Gx) 78アEE
1    (ウ)∃x(Fx∨Gx)     1267イ∨E
といふ「計算」は、
{xの変域}={、b、c}
であるとして、
(ⅰ)
1          (1) (Fa∨Ga)∨(Fb∨Gb) ∨(Fc∨Gc) A
1          (2){(Fa∨Ga)∨(Fb∨Gb)}∨(Fc∨Gc) 1結合法則
 3         (3){(Fa∨Ga)∨(Fb∨Gb)}         A
  4        (4) (Fa∨Ga)                  A
   5       (5)  Fa                      A
   5       (6)  Fa∨Fb                   5∨I
   5       (7)  Fa∨Fb∨Fc                6∨I
   5       (8) (Fa∨Fb∨Fc)∨(Ga∨GB∨Gc)    7∨I
    9      (9)     Ga                   A
    9      (ア)     Ga∨Gb                9∨I
    9      (イ)     Ga∨Gb∨Gc             ア∨I
    9      (ウ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    イ∨I
  4        (エ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    4589ウ∨E
     オ     (オ)         (Fb∨Gb)          A
      カ    (カ)          Fb              A
      カ    (キ)       Fa∨Fb              カ∨I
      カ    (ク)       Fa∨Fb∨Fc           キ∨I
      カ    (ケ) (Fa∨Fb∨Fc)∨(Ga∨GB∨Gc)    ク∨I
       コ   (コ)             Gb           A
       コ   (サ)          Ga∨Gb           コ∨I
       コ   (シ)          Ga∨Gb∨Gc        サ∨I
       コ   (ス) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    シ∨I
     オ     (セ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    オカケコス∨E
  3        (ソ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    34エオセ∨E
        タ  (タ)                  (Fc∨Gc) A
         チ (ツ)                   Fc     A
         チ (テ)                Fb∨Fc     ツ∨I
         チ (ト)             Fa∨Fb∨Fc     テ∨I
         チ (ナ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    ト∨I
          ニ(ニ)                      Gc  A
          ニ(ヌ)                   Gb∨Gc  ニ∨I
          ニ(ネ)                Ga∨Gb∨Gc  ヌ∨I
          ニ(ノ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    ネ∨I
        タ  (ハ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    タチナニノ∨E
1          (ヒ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    13ソタハ∨E
(ⅱ)
1          (1)(Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)   A
 2         (2)(Fa∨Fb∨Fc)              A
 2         (3)(Fa∨Fb)∨Fc              2結合法則
  4        (4)(Fa∨Fb)                 A
   5       (5) F                     A
   5       (6) Fa∨Ga                  5∨I
   5       (7)(Fa∨Ga)∨(Fb∨Gb)         6∨I
   5       (8)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 7∨I
    9      (9)    Fb                  A
    9      (ア)    Fb∨Gb               9∨I
    9      (イ)(Fa∨Ga)∨(Fb∨Gb)         ア∨I
    9      (ウ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) イ∨I
  4        (エ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 4589ウ∨E
     オ     (オ)        Fc              A
     オ     (カ)        Fc∨Gc           オ∨I
     オ     (キ)        (Fb∨Gb)∨(Fc∨Gc) カ∨I
     オ     (ケ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) キ∨I
 2         (コ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 34Eオケ∨E
      サ    (サ)           (Ga∨Gb∨Gc)   A
      サ    (シ)           (Ga∨Gb)∨Gc   A
       ス   (ス)           (Ga∨Gb)      A
        セ  (セ)            Ga          A
        セ  (ソ)         Fa∨Ga          セ∨I
        セ  (タ)(Fa∨Ga)∨(Fb∨Gb)         ソ∨I
        セ  (チ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) タ∨I
         ツ (ツ)               Gb       A
         ツ (テ)            Fb∨Gb       ツ∨I
         ツ (ト)(Fa∨Ga)∨(Fb∨Gb)         テ∨I
         ツ (ナ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) ト∨I
       ス   (ニ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) スセチツナ∨E
          ヌ(ヌ)                   Gc   A
          ヌ(ネ)                (Fc∨Gc) ヌ∨I
          ヌ(ノ)        (Fb∨Gb)∨(Fc∨Gc) ネ∨I
          ヌ(ハ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) ノ∨I
      サ    (ヒ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) サスニヌハ∨E
1          (フ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 12コサヒ∨E
といふ「計算(メチャクチャ、大変である)」に、「等しい」。
従って、
(04)により、
(05)
{xの変域}={、b、c}
であるとして、
2(2)∃x(Fx)A
3(3)   F A
といふ「計算」は、
2(2)(F∨Fb∨Fc) A
2(3)(F∨Fb)∨Fc 2結合法則
4(4)(F∨Fb)    A
5(5) F        A
9(9)    Fb     A
オ(オ)        Fc A
といふ「計算」に、「相当」する。
従って、
(06)
{xの変域}={、b、c}
であるとして、
3(3)F A
といふ「仮定」は、「実際」には、
5(5)F A
9(9)Fb A
オ(オ)Fc A
といふ「仮定」に、「相当」し、そのため、
連式 ∃x(Fx)├ F は妥当とは考えずは任意に選ばれているが、与えられたFをもつ対象の1つではないかもしれないから
この式を受け入れないのである
(E.j.レモン 著、論理学初歩、竹尾治一郎・浅野楢英 訳、1973年、149頁)。
といふ、ことになる。
(07)
「簡単」に言ふと、
{xの変域}={、b、c}
であるとして、
① F
② Fb
③ Fc
④(F∨Fb∨Fc)≡∃x(Fx)
に於いて、
①├ ④
②├ ④
③├ ④
といふ「3通り」があるため、
④├ ①
といふ「1通り」であるとは「限らず」、そのため、
∃x(Fx)├ F は「妥当とは考えないものの条件」を満たす限り、「計算としては同じ」になるため、「便宜的」に、
∃x(Fx)├ F であると、「見做してゐる」。
(08)
{xの変域}={、b、c}
であるとして、
5(5)F A
9(9)Fb A
オ(オ)Fc A
といふ「仮定」に、「相当」する所の、
3(3)F A
といふ「仮定」に於ける、「F」を、「代表的選言項(typical disjunct)」と言ふ。


(1349)「条件法(Conditional Proof)」は「簡単」である。

2024-12-12 12:05:32 | 論理

(01)
この規則(CP)の扱い方は、これまでの規則のそれよりも会得しにくいものであるが、しかしそれに習熟することはがどうしても必要である。
Its working is harder to grasp than that of the earlier rules, but familiarity with it is indispensable.
(E.J.レモン著、論理学初歩、竹尾治一郎、浅野楢英 訳、1973年、20頁)
然るに、
(02)
1 (1)  P   A
 2(2)    Q A
12(3)  P&Q 12&I
1 (4)Q→P&Q 23CP
従って、
(02)により、
(03)
① PP&Q
といふ「推論」、すなはち、「日本語」で言ふと、
① Pなので、Qならば、PであってQである。
といふ「推論」は「妥当」である。
従って、
(03)により、
(04)
① Pなので、Qならば、PであってQである。
に於いて、
P=原さんは日本人である。
Q=原さんは女性 である。
として、
① 原さんは日本人なので、原さんが女性であるならば、原さんは日本人の女性である。
といふ「推論」は「妥当」である。
然るに、
(05)
1  (1) P→ Q A
 2 (2)   ~Q A
  3(3) P    A
1 3(4)    Q 13MPP
123(5) ~Q&Q 24&I
12 (6)~P    35RAA
1  (7)~Q→~P 26CP
従って、
(05)により、
(06)
② P→Q~Q~P
といふ「推論」、すなはち、「日本語」で言ふと、
② PならばQなので、QでないならばPでない。
といふ「推論」は「妥当」である。
従って、
(06)により、
(07)
② P→Q ~Q~P
に於いて、
P=原さんは東京都民である。
Q=原さんは日本人 である、
として、
② 原さんが東京都民であるならば、原さんは日本人なので、原さんが日本人でないならば、原さんは東京都民ではない。
といふ「推論」は「妥当」である。
従って、
(03)(07)により、
(08)
① PP&Q
② P→Q ~Q~P
といふ「推論」の「代入例(substitution instances)」として、
① 原さんは日本なので、原さんが女性であるならば、原さんは日本人の女性である。
② 原さんが東京都民であるならば、原さんは日本人なので、原さんが日本人でないならば、原さんは東京都民ではない。
といふ「推論」は「妥当」であるが、
① 原さんは日本人なので、原さんが女性であるならば、原さんは日本人の女性である。
② 原さんが東京都民であるならば、原さんは日本人なので、原さんが日本人でないならば、原さんは東京都民ではない。
といふ「推論」が「正しい」ことは、「当然(当り前)」である。
従って、
(08)により、
(09)
① P├ Q→P&Q
② P→Q├ ~Q→~P
といふ「論理式」が「正しい」ことは、「当然(常識)」である。
従って、
(02)~(09)により、
(10)
① 原さんは日本人なので、原さんが女性であるならば、原さんは日本人の女性である。
② 原さんが東京都民であるならば、原さんは日本人なので、原さんが日本人でないならば、原さんは東京都民ではない。
といふ「日本語」で考へれば、
(ⅰ)
1 (1)  P   A
 2(2)    Q A
12(3)  P&Q 12&I
1 (4)Q→P&Q 23CP
(ⅱ)
1  (1) P→ Q A
 2 (2)   ~Q A
  3(3) P    A
1 3(4)    Q 13MPP
123(5) ~Q&Q 24&I
12 (6)~P    35RAA
1  (7)~Q→~P 26CP
といふ「命題計算(Propsitional Calculus)」が「正しい」ことは、「疑ふ余地が無い」。
従って、
(01)(10)により、
(11)
「E.J.レモン」とは異なり、「ブロガー自身」は、
この規則(CP)の扱い方は、他の規則のそれよりも会得しにくいものである。
Its working is harder to grasp than that of the other rules.
といふ風には、思ってゐない