日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(1350)「代表的選言項(typical disjunct)」について。

2024-12-14 14:04:39 | 論理

(01)
(ⅰ)
1   (1)∃x(Fx∨Gx)     A
 2  (2)   Fa∨Ga      A
  3 (3)   Fa         A
  3 (4)∃x(Fx)        3EI
  3 (5)∃x(Fx)∨∃x(Gx) 4∨I
   6(6)      Ga      A
   6(7)       ∃x(Gx) 6EI
   6(8)∃x(Fx)∨∃x(Gx) 7∨I
 2  (9)∃x(Fx)∨∃x(Gx) 23568∨I
1   (ア)∃x(Fx)∨∃x(Gx) 129EE
(ⅱ)
1    (1)∃x(Fx)∨∃x(Gx) A
 2   (2)∃x(Fx)        A
  3  (3)   F         A
  3  (4)   Fa∨Ga      3∨I
  3  (5)∃x(Fx∨Gx)     4EI
 2   (6)∃x(Fx∨Gx)     235EE
   7 (7)       ∃x(Gx) A
    8(8)          Ga  A
    8(9)       Fa∨Ga  8∨I
    8(ア)    ∃x(Fx∨Gx) 9EI
   7 (イ)    ∃x(Fx∨Gx) 78アEE
1    (ウ)∃x(Fx∨Gx)     1267イ∨E
従って、
(01)により、
(02)
① ∃x(Fx∨Gx)
② ∃x(Fx)∨∃x(Gx)
に於いて、
①=② である。
従って、
(02)により、
(03)
例へば、
① ある人は(フランス人であるか、または、ドイツ人である)。
② ある人は(フランス人である)か、または、ある人は(ドイツ人である)。
に於いて、
①=② である。
然るに、
(01)により、
(04)
(ⅰ)
1   (1)∃x(Fx∨Gx)     A
 2  (2)   Fa∨Ga      A
  3 (3)   Fa         A
  3 (4)∃x(Fx)        3EI
  3 (5)∃x(Fx)∨∃x(Gx) 4∨I
   6(6)      Ga      A
   6(7)       ∃x(Gx) 6EI
   6(8)∃x(Fx)∨∃x(Gx) 7∨I
 2  (9)∃x(Fx)∨∃x(Gx) 23568∨I
1   (ア)∃x(Fx)∨∃x(Gx) 129EE
(ⅱ)
1    (1)∃x(Fx)∨∃x(Gx) A
 2   (2)∃x(Fx)        A
  3  (3)   F         A
  3  (4)   Fa∨Ga      3∨I
  3  (5)∃x(Fx∨Gx)     4EI
 2   (6)∃x(Fx∨Gx)     235EE
   7 (7)       ∃x(Gx) A
    8(8)          Ga  A
    8(9)       Fa∨Ga  8∨I
    8(ア)    ∃x(Fx∨Gx) 9EI
   7 (イ)    ∃x(Fx∨Gx) 78アEE
1    (ウ)∃x(Fx∨Gx)     1267イ∨E
といふ「計算」は、
{xの変域}={、b、c}
であるとして、
(ⅰ)
1          (1) (Fa∨Ga)∨(Fb∨Gb) ∨(Fc∨Gc) A
1          (2){(Fa∨Ga)∨(Fb∨Gb)}∨(Fc∨Gc) 1結合法則
 3         (3){(Fa∨Ga)∨(Fb∨Gb)}         A
  4        (4) (Fa∨Ga)                  A
   5       (5)  Fa                      A
   5       (6)  Fa∨Fb                   5∨I
   5       (7)  Fa∨Fb∨Fc                6∨I
   5       (8) (Fa∨Fb∨Fc)∨(Ga∨GB∨Gc)    7∨I
    9      (9)     Ga                   A
    9      (ア)     Ga∨Gb                9∨I
    9      (イ)     Ga∨Gb∨Gc             ア∨I
    9      (ウ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    イ∨I
  4        (エ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    4589ウ∨E
     オ     (オ)         (Fb∨Gb)          A
      カ    (カ)          Fb              A
      カ    (キ)       Fa∨Fb              カ∨I
      カ    (ク)       Fa∨Fb∨Fc           キ∨I
      カ    (ケ) (Fa∨Fb∨Fc)∨(Ga∨GB∨Gc)    ク∨I
       コ   (コ)             Gb           A
       コ   (サ)          Ga∨Gb           コ∨I
       コ   (シ)          Ga∨Gb∨Gc        サ∨I
       コ   (ス) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    シ∨I
     オ     (セ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    オカケコス∨E
  3        (ソ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    34エオセ∨E
        タ  (タ)                  (Fc∨Gc) A
         チ (ツ)                   Fc     A
         チ (テ)                Fb∨Fc     ツ∨I
         チ (ト)             Fa∨Fb∨Fc     テ∨I
         チ (ナ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    ト∨I
          ニ(ニ)                      Gc  A
          ニ(ヌ)                   Gb∨Gc  ニ∨I
          ニ(ネ)                Ga∨Gb∨Gc  ヌ∨I
          ニ(ノ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    ネ∨I
        タ  (ハ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    タチナニノ∨E
1          (ヒ) (Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)    13ソタハ∨E
(ⅱ)
1          (1)(Fa∨Fb∨Fc)∨(Ga∨Gb∨Gc)   A
 2         (2)(Fa∨Fb∨Fc)              A
 2         (3)(Fa∨Fb)∨Fc              2結合法則
  4        (4)(Fa∨Fb)                 A
   5       (5) F                     A
   5       (6) Fa∨Ga                  5∨I
   5       (7)(Fa∨Ga)∨(Fb∨Gb)         6∨I
   5       (8)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 7∨I
    9      (9)    Fb                  A
    9      (ア)    Fb∨Gb               9∨I
    9      (イ)(Fa∨Ga)∨(Fb∨Gb)         ア∨I
    9      (ウ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) イ∨I
  4        (エ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 4589ウ∨E
     オ     (オ)        Fc              A
     オ     (カ)        Fc∨Gc           オ∨I
     オ     (キ)        (Fb∨Gb)∨(Fc∨Gc) カ∨I
     オ     (ケ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) キ∨I
 2         (コ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 34Eオケ∨E
      サ    (サ)           (Ga∨Gb∨Gc)   A
      サ    (シ)           (Ga∨Gb)∨Gc   A
       ス   (ス)           (Ga∨Gb)      A
        セ  (セ)            Ga          A
        セ  (ソ)         Fa∨Ga          セ∨I
        セ  (タ)(Fa∨Ga)∨(Fb∨Gb)         ソ∨I
        セ  (チ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) タ∨I
         ツ (ツ)               Gb       A
         ツ (テ)            Fb∨Gb       ツ∨I
         ツ (ト)(Fa∨Ga)∨(Fb∨Gb)         テ∨I
         ツ (ナ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) ト∨I
       ス   (ニ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) スセチツナ∨E
          ヌ(ヌ)                   Gc   A
          ヌ(ネ)                (Fc∨Gc) ヌ∨I
          ヌ(ノ)        (Fb∨Gb)∨(Fc∨Gc) ネ∨I
          ヌ(ハ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) ノ∨I
      サ    (ヒ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) サスニヌハ∨E
1          (フ)(Fa∨Ga)∨(Fb∨Gb)∨(Fc∨Gc) 12コサヒ∨E
といふ「計算(メチャクチャ、大変である)」に、「等しい」。
従って、
(04)により、
(05)
{xの変域}={、b、c}
であるとして、
2(2)∃x(Fx)A
3(3)   F A
といふ「計算」は、
2(2)(F∨Fb∨Fc) A
2(3)(F∨Fb)∨Fc 2結合法則
4(4)(F∨Fb)    A
5(5) F        A
9(9)    Fb     A
オ(オ)        Fc A
といふ「計算」に、「相当」する。
従って、
(06)
{xの変域}={、b、c}
であるとして、
3(3)F A
といふ「仮定」は、「実際」には、
5(5)F A
9(9)Fb A
オ(オ)Fc A
といふ「仮定」に、「相当」し、そのため、
連式 ∃x(Fx)├ F は妥当とは考えずは任意に選ばれているが、与えられたFをもつ対象の1つではないかもしれないから
この式を受け入れないのである
(E.j.レモン 著、論理学初歩、竹尾治一郎・浅野楢英 訳、1973年、149頁)。
といふ、ことになる。
(07)
「簡単」に言ふと、
{xの変域}={、b、c}
であるとして、
① F
② Fb
③ Fc
④(F∨Fb∨Fc)≡∃x(Fx)
に於いて、
①├ ④
②├ ④
③├ ④
といふ「3通り」があるため、
④├ ①
といふ「1通り」であるとは「限らず」、そのため、
∃x(Fx)├ F は「妥当とは考えないものの条件」を満たす限り、「計算としては同じ」になるため、「便宜的」に、
∃x(Fx)├ F であると、「見做してゐる」。
(08)
{xの変域}={、b、c}
であるとして、
5(5)F A
9(9)Fb A
オ(オ)Fc A
といふ「仮定」に、「相当」する所の、
3(3)F A
といふ「仮定」に於ける、「F」を、「代表的選言項(typical disjunct)」と言ふ。