using SymPy
@syms n
summation(1/2^n, (n, 0, oo)) # 2
summation(1/2^n, (n, 1, oo)) # 1
summation(1/((2n+1)*(2n+3)), (n, 1, oo)) # 1/6
summation(1/(n*(n+2)), (n, 1, oo)) # 3/4
summation(1/3^(n-1) - 1/4^n, (n, 1, oo)) # 7/6
summation(1/3^n, (n, 0, oo)) # 3/2
summation(n/(2n+1), (n, 1, oo)) # ∞
summation(1/(n*(n+2)*(n+3)), (n, 1, oo)) # 5/36
summation(cos(n*π/2)/2^n, (n, 1, oo)) |> print # Sum(cos(pi*n/2)/2^n, (n, 1, oo))
summation(cos(n*π/2)/2^n, (n, 1, 1000)).evalf() # -1/5
summation(π/12 *(1/9)^(n-1), (n, 1, oo)) # 0.294524311274043
3/32*π # 0.2945243112740431
summation(1/(n*(n+1)), (n, 1, oo)) # 1
summation(9*10^(-n), (n, 1, oo)) # 1
summation(1/factorial(n), (n, 0, oo)) # ℯ ネイピアの定数
summation(1/(2n+1)^2, (n, 0, oo)) # π²/8
summation(1/n^2, (n, 1, oo)) # π²/6
summation(1/n^4, (n, 1, oo)) # π⁴/90
summation(1/n^6, (n, 1, oo)) # π⁶/945
summation(1/n^8, (n, 1, oo)) # π⁸/9450
summation(1/n^3, (n, 1, oo)) # ζ(3) = 1.20205690315959
summation(1/n^5, (n, 1, oo)) # ζ(5) = 1.03692775514337
summation(1/n^7, (n, 1, oo)) # ζ(7) = 1.00834927738192
summation(1/n^9, (n, 1, oo)) # ζ(9) = 1.00200839282608