using Plots using Printf using SymPy ################## function segment(x1, y1, x2, y2, color=:black; linestyle=:solid, lw=0.5) plot!([x1, x2], [y1, y2], color=color; linestyle=linestyle, lw=lw) end; ################## function abline(x0, y0, slope, minx, maxx, color=:black; lw=0.5) f(x) = slope * (x - x0) + y0 segment(minx, f(minx), maxx, f(maxx), color; lw=lw) end; ################## function intersectionXY(x1, y1, x2, y2, x3, y3, x4, y4) denominator = (x1*y3 - x1*y4 - x2*y3 + x2*y4 - x3*y1 + x3*y2 + x4*y1 - x4*y2) X = (x1*x3*y2 - x1*x3*y4 - x1*x4*y2 + x1*x4*y3 - x2*x3*y1 + x2*x3*y4 + x2*x4*y1 - x2*x4*y3) / denominator Y = (x1*y2*y3 - x1*y2*y4 - x2*y1*y3 + x2*y1*y4 - x3*y1*y4 + x3*y2*y4 + x4*y1*y3 - x4*y2*y3) / denominator (X, Y) end ################## function distance(x1, y1, x2, y2, x0, y0) p1, p2 = sympy.Point(x1, y1), sympy.Point(x2, y2) l = sympy.Line(p1, p2) l.distance(sympy.Point(x0, y0))^2 # 二乗距離を返す!! end; function dist(x1, y1, x2, y2, x0, y0; point=false) # @syms dx, dy, line_length, vx, vy, projection_length, nearest_point_x, nearest_point_y # 直線の方向ベクトル dx = x2 - x1 dy = y2 - y1 # 直線の長さ line_length = sqrt(dx^2 + dy^2) # 直線上の点までのベクトル vx = x0 - x1 vy = y0 - y1 # 直線上の点までの射影ベクトルの長さ projection_length = (vx * dx + vy * dy) / line_length # 直線上の最近点の座標 nearest_point_x = x1 + (projection_length * dx) / line_length nearest_point_y = y1 + (projection_length * dy) / line_length if point # 直線上の最近点の座標を返す return (nearest_point_x, nearest_point_y) else # 点 (x0, y0) から直線までの二乗距離を返す return (x0 - nearest_point_x)^2 + (y0 - nearest_point_y)^2 end end; function dist2(x1, y1, x2, y2, x0, y0, r) @syms dummy_temp return numerator(apart(dist(x1, y1, x2, y2, x0, y0) - r^2, dummy_temp)) |> simplify# |> simplify end; #### 垂線の脚の座標 foot(x1, y1, x2, y2, x0, y0) = dist(x1, y1, x2, y2, x0, y0; point=true) ################## #### 射影(回転) function transform(x, y; deg=0, dx=0, dy=0) (x, y) = [cosd(deg) -sind(deg); sind(deg) cosd(deg)] * [x, y] return (x .+ dx, y .+ dy) end; function circle(ox, oy, r, color=:red; beginangle=0, endangle=360, by=0.5, n=0, lw=0.5) n != 0 && (by = (endangle - beginangle) / n) θ = beginangle:by:endangle x = r.*cosd.(θ) y = r.*sind.(θ) plot!(ox .+ x, oy .+ y, color=color, linewidth=lw) end; #### 回転角度を指定して複数個描く function rotate(ox, oy, r, color=:red; angle=120, beginangle=0, endangle=360, by=0.5, n=0) for deg in 0:angle:360-1 (ox2, oy2) = [cosd(deg) -sind(deg); sind(deg) cosd(deg)] * [ox; oy] circle(ox2, oy2, r, color; beginangle, endangle, by, n) beginangle += angle endangle += angle end end; function rotatef(ox, oy, r, color=:red; angle=120, beginangle=0, endangle=360, by=0.5, n=0) for deg in 0:angle:360-1 (ox2, oy2) = [cosd(deg) sind(deg); -sind(deg) cosd(deg)] * [ox; oy] circlef(ox2, oy2, r, color; beginangle, endangle, by, n) end end; ##### 2 個描く function circle2(x, y, r, color=:red) circle(x, y, r, color) circle(-x, y, r, color) end; ##### 2 個描く function circle2f(x, y, r, color=:red) circlef(x, y, r, color) circlef(-x, y, r, color) end; ##### 2 個描く --2 function circle22(x, y, r, color=:red) circle(x, y, r, color) circle(x, -y, r, color) end; ##### 2 個描く --2 function circle22f(x, y, r, color=:red) circlef(x, y, r, color) circlef(x, -y, r, color) end; ##### 4 個描く function circle4(x, y, r, color=:red) circle(x, y, r, color) circle(x, -y, r, color) circle(-x, y, r, color) circle(-x, -y, r, color) end; ##### 4 個描く function circle4f(x, y, r, color=:red) circlef(x, y, r, color) circlef(x, -y, r, color) circlef(-x, y, r, color) circlef(-x, -y, r, color) end; ##### 4 個描く --2 function circle42(x, y, r, color=:red) circle(x, y, r, color) circle(x, -y, r, color) circle(y, -x, r, color) circle(-y, -x, r, color) end; ##### 4 個描く --2 function circle42f(x, y, r, color=:red) circlef(x, y, r, color) circlef(x, -y, r, color) circlef(y, -x, r, color) circlef(-y, -x, r, color) end; # 塗りつぶしバージョン function circlef(ox, oy, r, color=:red; beginangle=0, endangle=360, by=0.5, n=0) n != 0 && (by = (endangle - beginangle) / n) θ = beginangle:by:endangle x = r.*cosd.(θ) y = r.*sind.(θ) plot!(ox .+ x, oy .+ y, linecolor=color, linewidth=0.5, seriestype=:shape, fillcolor=color) end; # アノテーション function point(x, y, string="", color=:green, position=:left, vertical=:top; mark=true, delta=0, deltax=0) mark && scatter!([x], [y], color=color, markerstrokewidth=0, markersize=3) annotate!(x + deltax, y + delta, text(string, 10, position, color, vertical)) end; ################## function dimension_line(x1, y1, x2, y2, str="", color=:black, position=:center, vertical=:vcenter; linestyle=:solid, lw=0.5, deltax=0, delta=0) plot!([x1, x2], [y1, y2], color=color; arrow=:arrow, linestyle=linestyle, lw=lw) plot!([x2, x1], [y2, y1], color=color; arrow=:arrow, linestyle=linestyle, lw=lw) annotate!((x1 + x2)/2 + deltax, (y1 + y2)/2 + delta, text(str, position, color, vertical, 10)) end; # 矩形 function rect(x1, y1, x2, y2, color=:pink; fill=false) if fill == false plot!([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1], color=color, linewidth=0.5) else plot!([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1], color=color, linewidth=0.5, seriestype=:shape, fillcolor=color) end end; # 楕円 function ellipse(ox, oy, ra, rb; φ=0, beginangle=0, endangle=360, color=:black, lty=:solid, lwd=0.5, fcolor="") """ (ox, oy) を中心,ra, rb を半径とする楕円(楕円弧)。 fcolor を指定すると塗りつぶし。 """ θ = beginangle:0.1:endangle if φ == 0 if fcolor == "" plot!(ra .* cosd.(θ) .+ ox, rb .* sind.(θ) .+ oy, linecolor=color, linestyle=lty, linewidth=lwd) else plot!(ra .* cosd.(θ) .+ ox, rb .* sind.(θ) .+ oy, linecolor=color, linestyle=lty, linewidth=lwd, seriestype=:shape, fillcolor=fcolor) end else x = ra .* cosd.(θ) y = rb .* sind.(θ) cosine = cosd(φ) sine = sind(φ) if fcolor == "" plot!(cosine .* x .- sine .* y .+ ox, sine .* x .+ cosine .* y .+ oy, linecolor=color, linestyle=lty, linewidth=lwd) else plot!(cosine .* x .- sine .* y .+ ox, sine .* x .+ cosine .* y .+ oy, linecolor=color, linestyle=lty, linewidth=lwd, seriestype=:shape, fillcolor=fcolor) end end end; #= 引数 楕円の長径 a,短径 b,接線の傾き(符号に注意) 戻り値 接点の座標 (x, y),楕円に外接する円の半径 r func(a, b, tanθ) = (-a^2*tanθ/sqrt(a^2*tanθ^2 + b^2), b^2/sqrt(a^2*tanθ^2 + b^2), -b + sqrt(a^2*tanθ^2 + b^2)); =#; ##### 多角形の面積 function area(xy) x = xy[:, 1] sum((vcat(x[2:end], x[1]) - vcat(x[end], x[1:end-1])) .* xy[:, 2]) / 2 end; ##### 二直線の交点座標 function intersection(x1, y1, x2, y2, x3, y3, x4, y4) p1, p2, p3, p4 = sympy.Point(x1, y1), sympy.Point(x2, y2), sympy.Point(x3, y3), sympy.Point(x4, y4) l1, l2 = sympy.Line(p1, p2), sympy.Line(p3, p4) a = l1.intersection(l2)[1] (a.x, a.y) end; ##### 楕円に内接する円の中心座標 function getd(a, b, r; x0 = 0, y0 = 0) d = sqrt((a^2 - b^2)*(b^2 - r^2))/b x = a^2*d/(a^2 - b^2) y = sqrt(r^2 - (x - d)^2) return (d, x, y) end; ##### 楕円に内接する円の半径 function getr(a, b, d; x0 = 0, y0 = 0) r = b*sqrt((a^2 - b^2 - d^2)/((a^2 - b^2))) x = a^2*d/(a^2 - b^2) y = sqrt(r^2 - (x - d)^2) return (r, x, y) end; ##### 曲率円の半径 geth(a, b) = b^2/a; ##### 外心を計算する関数 function circumcenter(x1, y1, x2, y2, x3, y3) D = 2 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) x_o = ((x1^2 + y1^2) * (y2 - y3) + (x2^2 + y2^2) * (y3 - y1) + (x3^2 + y3^2) * (y1 - y2)) / D y_o = ((x1^2 + y1^2) * (x3 - x2) + (x2^2 + y2^2) * (x1 - x3) + (x3^2 + y3^2) * (x2 - x1)) / D r = sqrt((x1 - x_o)^2 + (y1 - y_o)^2) return r, x_o, y_o end; ##### 内心を計算する関数 function incenter(x1, y1, x2, y2, x3, y3) a = sqrt((x2 - x3)^2 + (y2 - y3)^2) b = sqrt((x1 - x3)^2 + (y1 - y3)^2) c = sqrt((x1 - x2)^2 + (y1 - y2)^2) x_i = (a * x1 + b * x2 + c * x3) / (a + b + c) y_i = (a * y1 + b * y2 + c * y3) / (a + b + c) r = sqrt(distance(x1, y1, x2, y2, x_i, y_i)) return r, x_i, y_i end;
最新の画像[もっと見る]
- セルフうどん 製麺 七や 本店 15時間前
- セルフうどん 製麺 七や 本店 15時間前
- 算額(その1495) 15時間前
- 算額(その1495) 15時間前
- 算額(その1494) 19時間前
- 算額(その51)改訂版 23時間前
- 算額(その51)改訂版 23時間前
- 本格手打 さぬきうどんの駅 綾川 2日前
- 本格手打 さぬきうどんの駅 綾川 2日前
- 算額(その1492) 2日前
※コメント投稿者のブログIDはブログ作成者のみに通知されます