算額(その815)
藤田貞資:精要算法(下巻),天明元年(1781)
http://www.wasan.jp/seiyou/seiyou.html
大円内に 5 個の等円を描く。外円と等円の直径をそれぞれ 16 寸,10 寸としたとき,5 個の円の共通部分(黒積)を求めよ。
求めたい面積 S は
S1 = B を中心とする半径 r1 の円の ∠CBE/360 倍
S2 = 三角形 BCE
S3 = 三角形 OCE
とすると,
S = S1 - S2 + S3
まず,2個の等円の交点座標 C:(x0, y0) を求める。
include("julia-source.txt");
# julia-source.txt ソース https://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b73089ae813cf
using SymPy
@syms r0, r1, R, x0, y0, OX1, OY1, OX2, OY2
R = r0 - r1
(OX1, OY1) = (R*cosd(Sym(18)), R*sind(Sym(18)))
(OX2, OY2) = (0, R)
eq1 = (x0 - OX1)^2 + (y0 - OY1)^2 - r1^2
eq2 = (x0 - OX2)^2 + (y0 - OY2)^2 - r1^2
res = solve([eq1, eq2], (x0, y0));
x0 = res[2][1] |> factor
y0 = res[2][2] |> factor;
角度 ∠COE を求める
θ = asind(-x0/r1);
S1, S2, S3 を求める。式は長いが,そのままにしておく。
S1 = π*r1^2*θ/360
S2 = (-x0)*(OY2 - y0)/2
S3 = x0*y0/2
S1 |> println
S2 |> println
S3 |> println
-r1^2*asin((-5*sqrt(2) + sqrt(10))*(sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))/(8*r1*(-5 + sqrt(5))*sqrt(sqrt(5) + 5)))/2
-(-5*sqrt(2) + sqrt(10))*(r0 - r1 + (sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))/(4*(-5 + sqrt(5))))*(sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))/(16*(-5 + sqrt(5))*sqrt(sqrt(5) + 5))
-(-5*sqrt(2) + sqrt(10))*(sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))^2/(64*(-5 + sqrt(5))^2*sqrt(sqrt(5) + 5))
面積を求める。
S = 10(S1 - S2 + S3)
S |> println
-5*r1^2*asin((-5*sqrt(2) + sqrt(10))*(sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))/(8*r1*(-5 + sqrt(5))*sqrt(sqrt(5) + 5))) + 5*(-5*sqrt(2) + sqrt(10))*(r0 - r1 + (sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))/(4*(-5 + sqrt(5))))*(sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))/(8*(-5 + sqrt(5))*sqrt(sqrt(5) + 5)) - 5*(-5*sqrt(2) + sqrt(10))*(sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))^2/(32*(-5 + sqrt(5))^2*sqrt(sqrt(5) + 5))
r0 = 16//2, r1 = 10//2 を代入して数値を求める。
面積は 13.6341847764931 平方寸(歩)である。
S(r0 => 16//2, r1 => 10//2).evalf() |> println
13.6341847764931
S(r0 => 1872//2, r1 => 1466//2).evalf() |> println
915183.000045518
function transform(x, y; deg=0, dx=0, dy=0)
return [cosd(deg) -sind(deg); sind(deg) cosd(deg)] * [x, y]
end;
function rotatefigure(x2, y2)
for i in 1:5
plot!(x2, y2, seriestype=:shape, color=:gray70, fillcolor=:gray70, lw=0)
i == 5 && return
(x2, y2) = transform(x2, y2, deg = 72)
end
end;
function fillblack(r1, θ, OX2, OY2)
x2 = []
y2 = []
for i in 270 - θ:0.5:270
append!(x2, r1*cosd(i) + OX2)
append!(y2, r1*sind(i) + OY2)
end
x2 = vcat(x2, -reverse(x2), [0, x2[1]])
y2 = vcat(y2, reverse(y2), [0, y2[1]])
rotatefigure(x2, y2)
end;
function draw(more)
pyplot(size=(500, 500), grid=false, aspectratio=1, label="", fontfamily="IPAMincho")
x = Vector{Float64}(undef, 6)
y = Vector{Float64}(undef, 6)
(r0, r1) = (16, 10) .// 2
(r0, r1) = (1872, 1466) .// 2
R = r0 - r1
for i = 1:6
θ = 18 + (i - 1)*72
x[i] = R*cosd(θ)
y[i] = R*sind(θ)
end
(OX1, OY1) = (R*cosd(18), R*sind(18))
(OX2, OY2) = (0, R)
x0 = (-5*sqrt(2) + sqrt(10))*(sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))/(8*(-5 + sqrt(5))*sqrt(sqrt(5) + 5))
y0 = -(sqrt(5)*r0 + 5*r0 - 5*r1 - sqrt(5)*r1 - sqrt(10)*sqrt(-5*r0^2 + sqrt(5)*r0^2 - 2*sqrt(5)*r0*r1 + 10*r0*r1 + sqrt(5)*r1^2 + 3*r1^2))/(4*(-5 + sqrt(5)))
θ = asind(-x0/r1)
println("θ = $θ")
S = 10(π*r1^2*θ/360 - (-x0)*(OY2 - y0)/2 + x0*y0/2)
println("S = $S")
plot()
fillblack(r1, θ, OX2, OY2)
segment(OX2, OY2, x0, y0, :black, lw=1)
segment(OX2, OY2, 0, OY2 - r1, :black, lw=1.5)
segment(0, y0, x0, y0, :black, lw=1)
segment(0, 0, x0, y0, :black, lw=1)
circle(0, 0, r0)
circle(0, 0, r0 - r1, :magenta)
color = [:blue, :green, :gray80, :gray80, :gray80]
for i = 1:5
# segment(x[i], y[i], x[i + 1], y[i + 1], :blue)
circle(x[i], y[i], r1, color[i])
end
if more == true
delta = (fontheight = (ylims()[2]- ylims()[1]) / 500 * 10 * 2) /3 # size[2] * fontsize * 2
hline!([0], color=:gray80, lw=0.5)
vline!([0], color=:gray80, lw=0.5)
point(OX1, OY1, " A:r1,(OX1,OY1)", :blue, :left, :bottom, delta=delta/2)
point(OX2, OY2, " B:r1,(OX2,OY2)", :green, :left, :bottom, delta=delta/2)
point(x0, y0, "C:(x0,y0) ", :black, :right, :vcenter)
point(0, OY2 - r1, " D:(0,OY2 - r1) ", :black, :left, delta=-delta/2)
point(0, y0, " E:(0,y0) ", :black, :left, :bottom, delta=delta/2)
point(0, 0, " O", :black, :left, :vcenter)
point(r0 - r1, 0, " r0-r1", :magenta, :left, :bottom, delta=delta/2)
point(0, r0, " r0", :red, :left, :bottom)
# plot!(xlims=(-3, 5), ylims=(-3, 3))
end
end;
θ = 26.63149441418678
S = 915183.0000455183
r0,r1 を与えて黒積を返す関数を定義する。
function func(r0, r1)
p = √5 + 5
q = √5 - 5
s = p*(r0 - r1) - √10*sqrt(q*r0*(r0 - 2r1) + r1^2*(√5 + 3))
t = (√10 - 5√2)*s/(8q√p)
5(r0*t - r1*t - r1^2*asin(t/r1))
end;
func(8, 5)
13.634184776493093
この関数を使って,黒積が整数に極めて近い値になるときの r0, r1 の組を探索することもできる。
そのような候補として,r0 = 1872/2, r1 = 1466/2 のとき,黒積が 915183.0000455179 になる。
func(936, 733)
915183.0000455179