算額(その1567)
九十五 大船渡市猪川町長谷堂 気仙長谷寺 文政5年(1822)
山村善夫:現存 岩手の算額,昭和52年1月30日,熊谷印刷,盛岡市.
http://www.wasan.jp/yamamura/yamamura.html
キーワード:球5個,3次元
#Julia, #SymPy, #算額, #和算
盤上に大球 1 個,小球 4 個を載せる。小球は互いに外接しあい,大球は小球 3 個と外接している。小球の直径が 1 寸のとき,大球の直径はいかほどか。
大球の半径と中心座標を r1, (0, 0, r1)
小球の半径と中心座標を r2, (x22, r2, r2), (x21, 0, r2), (x22 + r2/√3, 0, z2)
とおき,以下の連立方程式を解く。
using SymPy
@syms r1::positive, r2::positive, x21::positive, x22::positive, z2::positive
s3 = √Sym(3)
eq1 = x22^2 + r2^2 + (r1 - r2)^2 - (r1 + r2)^2 # A:B
eq2 = (x22 + r2/s3)^2 + (z2 - r1)^2 - (r1 + r2)^2 # A:D
eq3 = r2^2/3 + r2^2 + (z2 - r2)^2 - 4r2^2 # B:D
eq4 = (x22 - x21)^2 + r2^2 - 4r2^2 # BC
res = solve([eq1, eq2, eq3, eq4], (r1, x21, x22, z2))[2]; # 2 of 3
# r1
res[1] |> sympy.sqrtdenest |> simplify |> println
r2*(sqrt(6) + 3)/2
大球の半径 r1 は,小球の半径 r2 の (√6 + 3)/2 倍である。
小球の直径が 1 寸のとき,大球の直径は (√6 + 3)/2 = 2.724744871391589 寸である。
# x21
res[2] |> sympy.sqrtdenest |> simplify |> println
r2*(sqrt(2) + 2*sqrt(3))
# x22
res[3] |> sympy.sqrtdenest |> simplify |> println
r2*(sqrt(2) + sqrt(3))
# z2
res[4] |> sympy.sqrtdenest |> simplify |> println
r2*(3 + 2*sqrt(6))/3