日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(975)「古典論理(実質含意)」としての「(P&Q)→R」(Ⅱ)。

2021-09-19 16:13:46 | 論理

 ―「一昨日(令和3年9月17日)の記事」を、補足します。―
(01)
①(P&Q)→R
②(P&Q)
に於いて、
①=② ではない。
然るに、
(02)
(ⅰ)
1      (1) (P&Q)→R    A
1      (2)~(P&Q)∨R    1含意の定義
 3     (3)~(P&Q)      A
 3     (4)~P∨~Q       3ド・モルガンの法則
 3     (5)~P∨~Q∨R     4∨I
  6    (6)       R    A
  6    (7) ~P∨~Q∨R    6∨I
1      (8) ~P∨~Q∨R    13567∨E
1      (9)~P∨(~Q∨R)   3結合法則
 ア     (ア)~P          A
 ア     (イ)~P∨R        ア∨I
 ア     (ウ) P→R        イ含意の定義
 ア     (エ)(P→R)∨(Q→R) ウ∨I
   オ   (オ)     (~Q∨R) A
   オ   (カ)       Q→R  オ含意の定義
   オ   (キ)(P→R)∨(Q→R) カ∨I
1      (ク)(P→R)∨(Q→R) 2アエオキ∨I
(ⅲ)
1   (1)(P→R)∨(Q→R) A
 2  (2) P&Q        A
  3 (3) P→R        A
 2  (4) P          2&E
 23 (5)   R        34MPP
   6(6)       Q→R  A
 2  (7)   Q        2&E
 2 6(8)         R  67MPP
12  (9)   R        13568∨E
1   (ア)(P&Q)→R     29CP
従って、
(02)により、
(03)
①(P&Q)→R
③(P→R)∨(Q→R)
に於いて、
①=③ である。
従って、
(01)(02)(03)により、
(04)
①(P&Q)→R
②(P&Q)⇔R
③(P→R)∨(Q→R)
に於いて、
①=② ではないが、
①=③ である。
従って、
(04)により、
(05)
①(P&Q)→R
②(P&Q)⇔R
③(P→R)∨(Q→R)
を「日本語」で書くと、
①(Pであって、Qである)ならば、Rである。
②(Pであって、Qである)ならば、そのときに限って、Rである。
③(Pであるならば、それだけで、10の倍数であるか、)または(Qであるならば、それだけで、10の倍数である。)
に於いて、
①=② ではないが、
①=③ である。
従って、
(04)(05)により、
(06)
①(P&Q)→R
②(P&Q)⇔R
③(P→R)∨(Q→R)
に於いて、
P= 2の倍数である。
Q= 5の倍数である。
R=10の倍数である。
とするならば、
①(2の倍数であって、5の倍数である)ならば、10の倍数である。
②(2の倍数であって、5の倍数である)ならば、そのときに限って、10の倍数である。
③(2の倍数であるならば、それだけで、10の倍数であるか、)または(5の倍数であるならば、それだけで、10の倍数である。)
に於いて、
①=② ではないが、
①=③ である。
然るに、
(06)により、
(07)
①(2の倍数であって、5の倍数である)ならば、10の倍数である。
②(2の倍数であって、5の倍数である)ならば、そのときに限って、10の倍数である。
③(2の倍数であるならば、それだけで、10の倍数であるか、)または(5の倍数であるならば、それだけで、10の倍数である。)
に於いて、
①=② ではないのに、
①=② であると、『誤解』すると、
②=③ ではないのに、
②=③ であるとの『誤解』が、生じることになる。
然るに、
(08)
②「2×5=10」は、10の倍数であって、
③「5×4=20」も、10の倍数である。
としても、
②「2×3= 6」は、10の倍数ではなく、
③「5×7=35」も、10の倍数ではない。
従って、
(08)により、
(09)
②(2の倍数であって、5の倍数である)ならば、そのときに限って、10の倍数である。
③(2の倍数であるならば、それだけで、10の倍数であるか、)または(5の倍数であるならば、それだけで、10の倍数である。)
に於いて、
② は、「真(本当)」であるが、
③ は、「偽(ウソ)」である。
従って、
(07)(08)(09)により、
(10)
①(2の倍数であって、5の倍数である)ならば、10の倍数である。
②(2の倍数であって、5の倍数である)ならば、そのときに限って、10の倍数である。
③(2の倍数であるならば、それだけで、10の倍数であるか、)または(5の倍数であるならば、それだけで、10の倍数である。)
に於いて、
①=② ではないのに、
①=② であると、『誤解』すると、
②=③ ではないのに、
②=③ であるとの『誤解』が生じ、その「結果」として、
②「真(本当)」なのに、
③「偽(ウソ)」であるといふ、「矛盾」が生じる。
従って、
(01)~(10)により、
(11)
①(P&Q)→R
②(P&Q)⇔R
③(P→R)∨(Q→R)
に於いて、
①=② ではないのに、
①=② であると、『誤解』すると、
②=③ ではないのに、
②=③ であるとの『誤解』が生じ、その「結果」として、
②「真(本当)」なのに、
③「偽(ウソ)」であるといふ、「矛盾」が生じる。
従って、
(02)(11)により、
(12)
①(P&Q)→R
②(P&Q)⇔R
③(P→R)∨(Q→R)
に於いて、
①=② ではないのに、
①=② であると、『誤解』すると、
②=③ であるとの『誤解』が生じ、その「結果」として、
1      (1) (P&Q)→R    A
1      (2)~(P&Q)∨R    1含意の定義
 3     (3)~(P&Q)      A
 3     (4)~P∨~Q       3ド・モルガンの法則
 3     (5)~P∨~Q∨R     4∨I
  6    (6)       R    A
  6    (7) ~P∨~Q∨R    6∨I
1      (8) ~P∨~Q∨R    13567∨E
1      (9)~P∨(~Q∨R)   3結合法則
 ア     (ア)~P          A
 ア     (イ)~P∨R        ア∨I
 ア     (ウ) P→R        イ含意の定義
 ア     (エ)(P→R)∨(Q→R) ウ∨I
   オ   (オ)     (~Q∨R) A
   オ   (カ)       Q→R  オ含意の定義
   オ   (キ)(P→R)∨(Q→R) カ∨I
1      (ク)(P→R)∨(Q→R) 2アエオキ∨I
    コ  (コ) P   & Q    A
     サ (サ) P→R        A
    コ  (シ) P          コ&E
    コサ (ス)   R        サシMPP
      セ(セ)       Q→R  A
    コ  (ソ)       Q    コ&E
    コ セ(タ)         R  ソタMPP
1   コ  (チ)   R        クサスセタ∨E
1      (ツ) (P&Q)→R    コチCP
といふ「計算(古典論理)」自体が、「誤り」である。
といふ『誤解』が生じる。
然るに、
(13)
大西拓郎先生(京都大学)は、
①(P&Q)→R
といふ「論理式」に関して、 [厳密含意の論理(1) [修正版](ユーチューブ:9分10秒頃)]に於いて、
③ PかつQ、2つの前提からRが導かれるんだったら実はそれ、1つで十分ですよ、みたいな、そういう推論なんですね。まぁこれ、をかしい
実質含意(古典論理)にはこういう変な推論がどうしてもつきまとうんですが、厳密含意になると、それがちゃんと妥当ではなくなってくれるという、ことです。
といふ風に、述べてゐる。
従って、
(12)(13)により、
(14)
大西拓郎先生(京都大学)は、
①(P&Q)→R
②(P&Q)⇔R
③(P→R)∨(Q→R)
に於いて、
①=② ではないのに、
①=② であると、『誤解』し、
その「結果」として、「実質含意(古典論理)」は、「ヲカシナ論理」であると、述べてゐる。
然るに、
(15)
①(P&Q)→R
②(P&Q)⇔R
③(P→R)∨(Q→R)
に於いて、
①=③ であるが、
②=③ ではない。
といふ「論理(理屈)」は、「カクテル(焼酎割を含む)の例」で考えると、「分かり易い」。
(16)
焼酎は種類が多いが、いろいろな割り方、飲み方で楽しめるのも焼酎の魅力のひとつだ。たとえばオン・ザ・ロック、水割り、お湯割り、ソーダ割りなど、ほかにもいろいろな方法がある。人気の飲み方、これぞ王道、伝統の飲み方などをベスト10形式でご紹介。もちろん、あなた流にアレンジして楽しんでほしい(焼酎の美味しい飲み方ランキングTOP10!おすすめの割りもの ...)。
従って、
(16)により、
(17)
「焼酎割を飲むと、酔ふ。」といふことは、例へば、
「焼酎を飲み、お茶を飲むと、酔ふ。」といふことである。
従って、
(17)により、
(18)
P=焼酎を飲む。
Q=お茶を飲む。
R=酔ふ。
といふ「代入」を行ふと、
① 焼酎割を飲むらば、酔ふ。
といふ「含意(仮言命題)」は、
①(P&Q)→R
といふ風に、書くことが、出来る。
然るに、
(19)
(ⅰ)「経験的(アポステオリ)」ではなく、
(ⅱ)「論理的(アプリオリ)」 には、
①(焼酎を飲むならば、酔ふ)  が、(お茶を飲んでも、 酔はない。)
②(焼酎を飲んでも、 酔はない)が、(お茶を飲むならば、酔ふ。)
③(焼酎を飲むならば、酔ふ)  し、(お茶を飲んでも、 酔ふ。)
といふことは、「3つ」とも「可能」である。
従って、
(18)(19)により、
(20)
①「焼酎のお茶割」を飲むらば、酔ふ。
といふことは、「論理的(アプリオリ)」には、
③(焼酎を飲むと酔ふか)、または(お茶を飲むと酔ふか)、または(その両方である)。
といふことに、他ならない。
従って、
(18)(19)(20)により、
(21)
①   (P&Q)→R ≡焼酎割を飲むらば、酔ふ。
といふことは、「論理的(アプリオリ)」には、
③(P→R)∨(Q→R)≡(焼酎を飲むと酔ふか)、または(お茶を飲むと酔ふか)、または(その両方である)。
といふことに、他ならない。