日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(66)人称名詞:吾輩は猫であるがタマではない(Ⅱ)。

2018-07-30 15:34:46 | 論理
(01)
③ ハンニバルは人間である。  といふのであれば、
④ ハンニバルといふ人間がゐる。といふことになる。
(02)
④ ハンニバルといふ人間がゐる。といふのであれば、
③ ハンニバルは人間である。 といふことになる。
従って、
(01)(02)により、
(03)
③ ハンニバルは人間である。
④ ハンニバルといふ人間がゐる。
に於いて、
③=④である。
然るに、
(04)
たり(助動詞)タリ型〔格助詞「と」にラ変動詞「有り」の付いた「とあり」の転〕断定の意を表す。
なり(助動詞)ナリ型〔格助詞「に」にラ変動詞「有り」の付いた「にあり」の転〕断定の意を表す。
で‐あ・る[連語]《断定の助動詞「なり」の連用形「に」に接続助詞「て」、補助動詞「あり」の付いた「にてあり」の音変化》
(デジタル大辞泉の解説)
然るに、
(05)
Hannibal Poenus est.
Penus は「カルタゴ人」、est は、フランス語の est、英語の is にあたる語です。
この est(esse)は「・・・である」の他に、「・・・がいる」あるいは「・・・がある」を表す時にも用います。
(小倉博行、ラテン語のしくみ、2014年、37頁改)
従って、
(03)(04)(05)により、
(06)
① ハンニバルは人間たり(と有り)。
② ハンニバルは人間なり(に有り)。
③ ハンニバルは人間である(にて有り)。
④ ハンニバルといふ人間がゐる
⑤ ハンニバル 人間 est.
に於いて、
①=②=③=④=⑤ である。
然るに、
(07)
存在記号(そんざいきごう、existential quantifier)とは、数理論理学(特に述語論理)において、少なくとも1つのメンバーが述語の特性や関係を満たすことを表す記号である。通常「」と表記され、存在量化子(そんざいりょうかし)、存在限量子(そんざいげんりょうし)、存在限定子(そんざいげんていし)などとも呼ばれる。
(ウィキペディア)
従って、
(07)により、
(08)
x(ハンニバルx&人間x)=
有るxは、ハンニバルであって、人間である。
といふ風に、「読むこと」が出来る。
然るに、
(09)
⑥ あるxは、ハンニバルであって、人間である。
といふことは、
④ ハンニバルといふ人間がゐる
といふ、ことである。
従って、
(06)~(09)により
(10)
① ハンニバルは人間たり(と有り)。
② ハンニバルは人間なり(に有り)。
③ ハンニバルは人間である(にて有り)。
④ ハンニバルといふ人間がゐる
⑤ ハンニバル 人間 est.
⑥ ∃x(ハンニバルx&人間x)
に於いて、
①=②=③=④=⑤=⑥ である。
従って、
(10)により、
(11)
① ハンニバルは人間である
といふ「日本語」は、
x(ハンニバルx&人間x)。
といふ「述語論理」に、「翻訳」される。
従って、
(11)により、
(12)
② 吾輩は猫である
といふ「日本語」は、
x(吾輩x&猫x)。
といふ「述語論理」に、「翻訳」される。
然るに、
(13)
② ∃x{吾輩x&猫x&~∃y(名前yx)}。
といふ「述語論理」は、
② あるxは、吾輩であって猫であって、あるyが、xの名前であるといふことはない。
といふ「意味」である。
従って、
(14)
② ∃x{吾輩x&猫x&~∃y(名前yx)}。
といふ「述語論理」は、
② 吾輩は猫であり、吾輩には名前がない。
といふ、「意味」である。
然るに、
(15)
③ ∃x{タマx&∃y(名前yx)}
といふ「述語論理」は、 
③ あるxは、タマであって、あるyは、xの名前である。
といふ、「意味」である。
従って、
(16)
③ ∃x{タマx&∃y(名前yx)}
といふ「述語論理」は、 
③ タマには名前がある。
といふ「意味」である。
然るに、
(17)
1   (1) ∃x{吾輩x&猫x& ~∃y(名前yx)} A
 2  (2)    吾輩a&猫a& ~∃y(名前ya)  A
 2  (3)    吾輩a                2&E
 2  (4)        猫a             2&E
 2  (5)            ~∃y(名前ya)  2&E
  6 (6) ∃x{タマx&     ∃y(名前yx)  A
   7(7)    タマa&     ∃y(名前ya)  A
   7(8)    タマa&               7&E
   7(9)             ∃y(名前ya)  7&E
 2 7(ア)   ~∃y(名前ya)&∃y(名前ya)  59&I
 26 (イ)   ~∃y(名前ya)&∃y(名前ya)  67アEE
 2  (ウ)~∃x{タマx&     ∃y(名前yx)} 6イRAA
 2  (エ)∀x~{タマx&     ∃y(名前yx)} ウ量化子の関係
 2  (オ)  ~{タマa&     ∃y(名前ya)} エUE
 2  (カ)   ~タマa∨    ~∃y(名前ya)  オ、ドモルガンの法則
 2  (キ)   ~∃y(名前ya)∨~タマa      カ交換法則
 2  (ク)    ∃y(名前ya)→~タマa      キ含意の定義
 2 7(ケ)             ~タマa      9クMPP
 2 7(コ)    吾輩a&~タマa           3ケ&I
 2 7(サ)    吾輩a&~タマa&猫a        4コ&I
 2 7(シ) ∃x(吾輩x&~タマx&猫x)       サEI
 26 (ス) ∃x(吾輩x&~タマx&猫x)       67シEE
1 6 (セ) ∃x(吾輩x&~タマx&猫x)       12スEE
然るに、
(18)
④ ∃x(吾輩x&~タマx&猫x)
といふ「述語論理」は、
④ あるxは、吾輩であって、タマではなく、猫である。
従って、
(14)~(18)により、
(19)
「吾輩は猫であるが、名前は無い。然るに、タマには名前がある。故に、吾輩はタマではないが、猫である。」
といふ「推論」は「正しい」。
然るに、
(20)
第1に、固有名詞をつぎの符号のひとつとして定義する。
   ,n,・・・・・
第2に、任意の名前をつぎの符号のひとつとして定義する。
   a,b,c,・・・・・
第3に、個体変数をつぎの符号のひとつとして定義する。
   x,y,z,・・・・・
第4に、述語文字をつぎの符号のひとつとして定義する。
   F,G,H,・・・・・
(E.J.レモン 著、竹尾治一郎・浅野楢英 訳、論理学初歩、1973年、176頁)
従って、
(19)(20)により、
(21)
「タマには、タマといふ名前が有る。」として、「E.J.レモン 著、論理学初歩」の「やり方」に従ふのであれば、
③ ∃x{タマx&∃y(名前yx)}
といふ「述語論理」は、 
③ ∃y(名前ym)=
③ あるyは(タマ)の名前である。
といふ風に、「書き換へ」る「必要」が有る。
然るに、
(22)
タマ=m
とした上で、(17)を「書き換へ」ると、次のやうになる。
(23)
1    (1)∃x{吾輩x&猫x&~∃y(名前yx)} A
 2   (2)   吾輩a&猫a&~∃y(名前ya)  A
 2   (3)   吾輩a               2&E
 2   (4)       猫a            2&E
 2   (5)          ~∃y(名前ya)  2&E
 2   (6)          ∀y~(名前ya)  5量化子の関係
 2   (7)            ~(名前ba)  6UE
  8  (8)           ∃y(名前ym)  A
   9 (9)             (名前bm)  A
    ア(ア)     a=m             A
   9ア(イ)             (名前ba)  9ア=E
 2 9ア(ウ)     ~(名前ba)&(名前ba)  7イ&I
 2 9 (エ)   ~(a=m)            アウRAA
 28  (オ)   ~(a=m)            89EE            
1 8  (カ)   ~(a=m)            12オEE
128  (キ)   吾輩a&~(a=m)        3カ&I
128  (ク)   吾輩a&~(a=m)&猫a     3キ&I
128  (ケ)∃x{吾輩x&~(x=m)&猫x}    クEI
1 8  (コ)∃x{吾輩x&~(x=m)&猫x}    12ケEE
然るに、
(22)(23)により、
(24)
∃x{吾輩x&猫x&~∃y(名前yx)}=あるxは、吾輩であって猫であって、あるyがxの名前であるといふことはない。
∃y(名前ym)            =あるyはタマの名前である(タマにはタマといふ名前がある)。
∃x{吾輩x&~(x=m)&猫x}   =あるxは、吾輩であって、 タマではないが猫である。
従って、
(20)~(24)により、
(25)
「吾輩は猫であるが、名前は無い。然るに、タマには名前がある。故に、吾輩はタマではないが、猫である。」
といふ「推論」は「正しい」。
従って、
(17)(19)(23)(25)により、
(26)
「吾輩とタマ」の両方を、「普通名詞」として扱ふ場合も、
「吾輩」を「普通名詞」として、「タマ」を「固有名詞」として扱ふ場合も、
「吾輩は猫であるが、名前は無い。然るに、タマには名前がある。故に、吾輩はタマではないが、猫である。」
といふ「論証」は、「述語論理」として「妥当(Valid)」である。