日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(362)∀xFx∨∀xGx├ ∀x(Fx∨Gx)

2019-10-05 12:41:06 | 論理

(01)
「&(の働き)」と「∨(の働き)」を理解してゐれば、
① (Fa&Fb&Fc)∨(Ga&Gb&Gc)
②(Fa∨Ga)&(Fb∨Gb)&(Fc∨Gc)
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない
といふことは、「容易理解」出来る。
然るに、
(02)
存在量記号選言の仲間であり、普遍量記号連言の仲間である(E.J.レモン、論理学初歩)。」といふことから、
① (Fa&Fb&Fc)∨(Ga&Gb&Gc)
②(Fa∨Ga)&(Fb∨Gb)&(Fc∨Gc)
といふ「事態」は、{a,b,c}が「ドメイン(変域)」であるとして、
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
といふ「論理式」に相当する。
従って、
(01)(02)により、
(03)
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
に於いて、
① ならば、② であるが、
② ならば、① ではない
然るに、
(04)
(ⅰ)
1  (1) ∀xFx∨∀xGx A
 2 (2) ∀xFx      A
 2 (3)   Fa      2UE
 2 (4)   Fa∨Ga   3∨I
 2 (5)∀x(Fx∨Gx)  4UI
  6(6)      ∀xGx A 
  6(7)        Ga 6UE
  6(8)   Fa∨Ga   7∨I
  6(9)∀x(Fx∨Gx)  8UI
1  (ア)∀x(Fx∨Gx)  12569∨E
従って、
(03)(04)により、
(05) 
確かに、
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
に於いて、
① ならば、② である。
然るに、
(06)
(ⅱ)
1 (1)∀x(Fx∨Gx)  A
1 (2)   Fa∨Ga   1UE
 (3)   F      A
 3(4) ∀xFx      UI
然るに、
(07)
しかし(3)は「」を含む故、ここで∀xFxを結論することはさしとめられる
(論理学初歩、E.J.レモン著、竹尾治一郎・浅野楢英 訳、1973年、156)
(08)
1 (2)   Fa∨Ga   1UE
 (3)   F      A
 3(4) ∀xFx      UI
といふことは、
  (2)aはFであるか、aはGである。
  (3)仮に、aFであるとする。従って、
  (4)aはFであり、bFであり、cFである。
と言ってゐるのに「等しい」ため、当然、「マチガイ」である。
従って、
(06)(07)(08)により、
(09)
(ⅱ)
1  (1) ∀x(Fx∨Gx) A
1  (2)    Fa∨Ga  1UE
 3 (3)    Fa     A
 3 (4)  ∀xFx     3UI
に続く、
 3 (5)∀xFx∨∀xGx  4∨I
  6(6)       Ga  A
  6(7)     ∀xGx  6UI
  6(8)∀xFx∨∀xGx  7∨I
1  (9)∀xFx∨∀xGx  23568∨E 
といふ「計算」も、「妥当」ではない
従って、
(06)~(09)により、
(10)
確かに、
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
に於いて、
② ならば、① ではない
従って、
(03)(05)(09)により、
(10)
確かに、
① ∀xFx∨∀xGx
② ∀x(Fx∨Gx)
に於いて、
① ならば、② であるが、
② ならば、① ではない。
(11)
「&(の働き)」と「∨(の働き)」を理解してゐれば、
① (Fa&Fb&Fc)∨(Ga&Gb&Gc)
②(Fa∨Ga)&(Fb∨Gb)&(Fc∨Gc)
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない。
といふことは、「容易理解」できる。といふ際に、
「どのやうに、容易に理解できる」のかと言ふと、「結局」は、
(ⅰ)
1  (1) ∀xFx∨∀xGx A
 2 (2) ∀xFx      A
 2 (3)   Fa      2UE
 2 (4)   Fa∨Ga   3∨I
 2 (5)∀x(Fx∨Gx)  4UI
  6(6)      ∀xGx A 
  6(7)        Ga 6UE
  6(8)   Fa∨Ga   7UI
  6(9)∀x(Fx∨Gx)  8UI
1  (ア)∀x(Fx∨Gx)  12569∨E
(ⅱ)
1  (1) ∀x(Fx∨Gx) A
1  (2)    Fa∨Ga  1UE
 3 (3)    Fa     A
 3 (4)  ∀xFx     3UI
といふ「計算」と、「同じ思考の過程を辿る」ことによって、「容易理解できる」。