(01)
①「男子の学生がゐる。」ならば、
②「男子がゐて、学生がゐる。」
然るに、
(02)
②「男子がゐて、学生がゐる。」としても、
①「男子の学生がゐる。」とは、限らない。
従って、
(01)(02)により、
(03)
①「男子の学生がゐる。」
②「男子がゐて、学生がゐる。」
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない。
然るに、
(04)
「存在量記号は選言の仲間であり、普遍量記号は連言の仲間である(E.J.レモン、論理学初歩)。」といふことから、
{a,b,c}の{三人}が「ドメイン(変域)」であるならば、
①「男子の学生がゐる。」
②「男子がゐて、学生がゐる。」
は、それぞれ、
①(男子a&学生a)∨(男子b&学生b)∨(男子c&学生c)
②(男子a∨男子b∨男子c)&(学生a∨学生b∨学生c)
といふ「事態」に、相当する。
然るに、
(05)
{a,b,c}の{三人}が「ドメイン(変域)」であるならば、
①(男子a&学生a)∨(男子b&学生b)∨(男子c&学生c)
②(男子a∨男子b∨男子c)&(学生a∨学生b∨学生c)
といふ「事態」は、
① ∃x(男子x&学生x)
② ∃x男子x&∃x学生x
といふ「式」で、表すことが、出来る。
従って、
(01)~(05)により、
(06)
①「男子の学生がゐる。」
②「男子がゐて、学生がゐる。」
といふ「日本語」は、
① ∃x(男子x&学生x)
② ∃x男子x&∃x学生x
といふ「式」に、相当し、それ故に、
① ∃x(男子x&学生x)
② ∃x男子x&∃x学生x
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない。
従って、
(06)により、
(07)
(ⅰ)
1 (1)∃x(男子x&学生x) A
1 (〃)男子の学生がゐる。 A
2(2) 男子a&学生a A
2(3) 男子a 2&E
2(4)∃x(男子x) 3EI
2(5) 学生a 2&E
2(6) ∃x(学生x) 5EI
2(7)∃x(男子x)&∃x(学生x) 46&I
1 (8)∃x(男子x)&∃x(学生x) 127EE
といふ「計算」は、「妥当」であるが、
(ⅱ)
1 (1)∃x(男子x) A
1 (〃)あるxは男子である。 A
2 (2)∃x(学生x) A
2 (〃)あるxは学生である。 A
3 (3) 男子a A
4(4) 学生a A
34(5) 男子a&学生a 34&I
34(6)∃x(男子x&学生x) 5EI
23 (7)∃x(男子x&学生x) 24EE
12 (8)∃x(男子x&学生x) 13EE
12 (〃)男子の学生がゐる。 13EE
といふ「計算」は、「妥当」ではない。
(08)
「&(の働き)」と「∨(の働き)」と「真理表」を理解してゐれば、
①(男子a&学生a)∨(男子b&学生b)∨(男子c&学生c)
②(男子a∨男子b∨男子c)&(学生a∨学生b∨学生c)
に於いて、
① ならば、② であるが、
② ならば、① であるとは、限らない。
といふことは、「容易に理解」出来る。